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PREFACE 
 

 

This compilation opens with a review of the clinical and preclinical 

studies that reproduce type 1 diabetes, prediabetes and type 2 diabetes, along 

with an analysis of the complications at the central level, as well as cognitive 

impairment and its relation with dementia. 

Continuing, the authors review the typical neurocognitive deficits 

associated with alcohol exposure in pregnancy; the relationship between 

fetal alcohol spectrum disorder and attention-deficit hyperactivity disorder 

and autism spectrum disorder; and the combined effects of alcohol and drug 

abuse. 

In addition, recent literature summarizing the main roles of sirtuin 2 in 

the central nervous system is addressed in an attempt to understand the 

relationship between sirtuin 2, senescence and neurodegenerative diseases. 

The relationship between biological motion, emotions, and theory of 

mind in people with neurodevelopmental disorders is examined. 

Specifically, the authors use bottom-up and top-down investigations to 

systematically uncover behavioral and neurological patterns of biological 

motion perception in people with Williams syndrome, autism spectrum 

disorder, and Down syndrome. 

One study deals with the definition of consciousness, the description of 

the neural substrates that have been associated with it, and the examination 

of the main interpretative models. 
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In closing, theory of mind as an implication of empowerment is explored 

using empirical data on social competence development among children. 

Chapter 1 - Diabetes mellitus (DM) is a public health concern that 

affects 415 million adults and the number is projected to reach over 640 

million by 2040. There are also over 47 million people living with dementia 

and this number is expected to affect 110 million people by 2050. The most 

common types of dementia are Alzheimer’s disease (AD) and vascular 

dementia (VaD). The underlying mechanisms are not completely understood 

and borderlines between AD and VaD are blurry in many cases. Although 

age remains the main risk factor to suffer dementia, other relevant factors 

including metabolic diseases, and DM specifically, may predispose to suffer 

dementia. In this sense, DM is a chronic metabolic disease that affects 

peripheral organs as well as the brain.  

The most common forms of DM include type 1 diabetes (T1D) and type 

2 diabetes (T2D), which is largely preceded by prediabetes. T1D is 

characterized by β-pancreatic cell destruction, usually leading to absolute 

insulin deficiency and hyperglycemia. On the other hand T2D is due to a 

progressive insulin secretory defect associated to insulin resistance that 

results in increased glucose levels. The prediabetes stage precedes T2D and 

it is characterized by increased insulin levels that limit hyperglicemia until 

the balance is broken and T2D debuts. The close relation between DM and 

dementia has led to many studies in patients and animal models. In this 

chapter the authors will focus both on clinical and preclinical studies that 

reproduce T1D, prediabetes and T2D and the authors will analyze the 

complications at central level, as well as cognitive impairment and its 

relation with dementia.  

Chapter 2 - Prenatal exposure to alcohol can create a spectrum of 

neurocognitive impairments in developing children. The presentation of 

FASD can vary considerably in severity from mild, to severe cognitive, 

behavioral, emotional and physical abnormalities. In this review chapter the 

authors will focus on neurocognitive deficits frequently present in children 

with FASD, and the clinical implications in relation to these deficits. The 

prognosis is better for affected children and young people who receive early 

diagnosis and appropriate support, than in those for whom support is not 
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provided. It is, therefore of central importance to increase knowledge and 

understanding of this preventable neurodevelopmental disorder and how 

best to manage and support children and families affected. 

In this chapter, the authors will focus on reviewing the following issues: 

The typical neurocognitive deficits associated with alcohol exposure in 

pregnancy; 

The relationship between FASD and Attention-Deficit Hyperactivity 

Disorder (ADHD), and FASD and Autism Spectrum Disorder (ASD); 

The combined effects of alcohol and drug abuse  

Chapter 3 - Epigenetic changes play an important role in the ageing 

process and have been implicated in many age-related diseases. Sirtuins, 

which are nicotinamide adenine dinucleotide (NAD)+-dependent class III 

histone deacetylases, have emerged as master regulators of metabolism and 

longevity. Among all sirtuins, Sirtuin 2 (SIRT2) is the most expressed in the 

central nervous system (CNS). It has been involved in a variety of biological 

processes including gene transcription, apoptosis, ageing, autophagy and 

inflammation. However, different groups have provided seemly 

contradictory results, thus, its specific functions remain unknown.  

It has been described an age-dependent accumulation of SIRT2 in the 

brain. Moreover, its pharmacological inhibition shows neuroprotective 

effects in different models of Huntington, Parkinson and Alzheimer´s 

diseases suggesting its potential as a therapeutic target for age-related 

diseases. Thus, due to its possible implication in the etiology or development 

of neurodegenerative diseases, the elucidation of its functions in the CNS is 

crucial for understanding the molecular basis of these diseases and 

fundamental for the advancement of new therapeutic strategies.  

In this context, the aim of the present chapter is to review recent 

literature, summarize the main roles of SIRT2 in the CNS and try to 

understand the relationship between SIRT2, senescence and 

neurodegenerative diseases.  

Chapter 4 - Biological motion perception is the unique ability to 

perceive movement of the human body. This perception requires attention 

to global configurations and is an essential ability in relation to theory of 

mind and social cognition. Weak central coherence of global-ignoring and 
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local-focusing styles in visuospatial perception is characteristic of 

neurodevelopmental disorders. This weakness causes deficits in face 

processing and biological motion perception, which in turn influences 

development of the theory of mind, or emotional intelligence. Emotion is an 

essential component of social cognition. This chapter examines the 

relationship between biological motion, emotions, and theory of mind in 

people with neurodevelopmental disorders. Specifically, this chapter uses 

bottom-up and top-down investigations to systematically uncover 

behavioral and neurological patterns of biological motion perception (with 

and without emotions) in people with Williams syndrome, autism spectrum 

disorder, and Down syndrome. The results show that neurodevelopmental 

disorders cause changes to distinct genotypes in the early stage of life, and 

these changes have devastating effects on later development of phenotypes. 

Chapter 5 - Among all the cognitive abilities of the human brain, the one 

that has most deeply interested neuroscientists is consciousness, which at its 

simplest refers to “sentience or awareness of internal or external existence.” 

Several theories have been proposed to explain this phenomenon. Stuss, 

Picton, and Alexander (2001) and Stuss and Anderson (2004) argued that 

there are different types of consciousness, hierarchically organized, which 

need to be differentiated. The different types of consciousness are associated 

with distinct neural substrates, which remain the subject of intense 

investigation. Someone suggested that it could be a “real function” localized 

in a precise region of the brain, which would deal precisely with collecting 

and synthesizing stimuli deriving from other areas. For others, it would 

depend on the synchronization between sensory and mnemonic areas: 

critical groups of neurons, in different areas of the brain, would discharge 

simultaneously, thus giving rise to that integration of stimuli which is 

consciousness. Some neurobiological models of consciousness assume that 

the contents of consciousness are widely distributed in the brain. 

In “The Astonishing Hypothesis” (1994), Francis Crick identifies the 

anterior cingulate, as a likely candidate for the center of free will in humans. 

The anterior cingulate cortex acts as an important interface between emotion 

and cognition, and more specifically in the conversion of feelings into 

intentions and actions. It has been implicated in 1) emotion, motivation, and 
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attention; 2) facial self-recognition, interceptive and emotional awareness; 

3) integration of conscious experience; 4) error detection, conflict-

monitoring, and self-related information monitoring. Given the above, the 

ACC would play an important role in both “core” and introspective self-

awareness. Damasio and Mayer (2008) has previously suggested that “core 

consciousness” occurs when an organism becomes consciously aware of 

feelings associated with changes occurring to its internal bodily state; it is 

able to recognize that its thoughts are his own, and that they are formulated 

in its own perspective.  

Modern neuroscience suggests that the brain’s intrinsic activity may be 

an important process underlying consciousness. The Salience Network (SN) 

is an intrinsically connected large-scale network anchored in the anterior 

insula and dorsal anterior cingulate cortex. Together with its interconnected 

resting state networks, it contributes to a variety of complex brain functions. 

The SN has been implicated in modulating the switch between the externally 

directed cognition of the Central Executive Network (CES) and the 

internally directed cognition of the Default Mode Network (DMN). 

Moreover, the SN has been implicated in the detection and integration of 

emotional and sensory stimuli, coming for this considered responsible for 

self-awareness.  

The chapter will deal with the definition of consciousness, the 

description of the neural substrates that have been associated with it, and the 

examination of the main interpretative models. Particular attention will be 

given to the role played by the cingulate cortex as a hub in functional 

networks involved in the emergence of consciousness. 

Chapter 6 - A Theory of Mind (ToM) reflects humankind’s evolution as 

social beings. That is, ToM implies potential energy, motivation, and 

empowerment. Empowerment is something that gives people hopes and 

dreams, brings them courage, and prompts them to be filled with the strength 

to live. Human beings are born with splendid abilities, and throughout their 

lives, they can continue to demonstrate magnificent strengths. 

Empowerment draws out that magnificent power and allows the vital force 

and potential that lie hidden deep within us to flow. 

Complimentary Contributor Copy



Andres Costa and Eugenio Villalba xii 

This chapter explores theory of mind as an implication of empowerment, 

using empirical data on social competence development among children. 
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COGNITIVE ALTERATIONS IN PRECLINICAL 

MODELS OF DIABETES MELLITUS 
 

 

Carmen Hierro-Bujalance and Monica Garcia-Alloza*  
Division of Physiology, School of Medicine, University of Cadiz, 

Cadiz, Spain 

Institute of Research and Innovation in Biomedical Sciences for the 

Province of Cadiz (INiBICA), Cadiz, Spain 

 

 

ABSTRACT 
 

Diabetes mellitus (DM) is a public health concern that affects 415 

million adults and the number is projected to reach over 640 million by 

2040. There are also over 47 million people living with dementia and this 

number is expected to affect 110 million people by 2050. The most 

common types of dementia are Alzheimer’s disease (AD) and vascular 

dementia (VaD). The underlying mechanisms are not completely 

understood and borderlines between AD and VaD are blurry in many cases. 

Although age remains the main risk factor to suffer dementia, other 

relevant factors including metabolic diseases, and DM specifically, may 

predispose to suffer dementia. In this sense, DM is a chronic metabolic 

disease that affects peripheral organs as well as the brain.  

                                                      
* Corresponding Author’s Email: monica garcia@uca.es. 
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The most common forms of DM include type 1 diabetes (T1D) and 

type 2 diabetes (T2D), which is largely preceded by prediabetes. T1D is 

characterized by β-pancreatic cell destruction, usually leading to absolute 

insulin deficiency and hyperglycemia. On the other hand T2D is due to a 

progressive insulin secretory defect associated to insulin resistance that 

results in increased glucose levels. The prediabetes stage precedes T2D and 

it is characterized by increased insulin levels that limit hyperglicemia until 

the balance is broken and T2D debuts. The close relation between DM and 

dementia has led to many studies in patients and animal models. In this 

chapter we will focus both on clinical and preclinical studies that reproduce 

T1D, prediabetes and T2D and we will analyze the complications at central 

level, as well as cognitive impairment and its relation with dementia.  

 

Keywords: type 1 diabetes (T1D), type 2 diabetes (T2D), prediabetes, 

Alzheimer´s disease (AD), vascular dementia (VaD) 

 

 

1. INTRODUCTION 
 

1.1. Diabetes Mellitus: General Considerations 
 

Metabolic diseases drastically affect the life of men and women from 

childhood to old age in many different ways and they are a great challenge 

for health professionals as well as a major social issue. According to a report 

by World Health Organization, 108 million adults worldwide suffered 

diabetes mellitus (DM) in 1980, reaching 422 million in 2014. The 

prevalence (normalized by age) of diabetes has almost doubled since then, 

affecting 8.5% of the adult population. Interestingly, diabetes prevalence is 

increasing, particularly in developing countries (Morales et al., 2001). It also 

needs to be taken into consideration that metabolic disease and diabetes 

specifically, are affected by gender differences that determine detection, 

diagnosis and treatment strategies, as well as the development of 

complications and mortality rates. Men seem to have a higher risk of 

diabetes at a younger age; however, women have a dramatic increase in the 

risk of vascular complications associated with diabetes afterwards (Kautzky-

Willer et al., 2019). DM is characterized by persistent increase in blood 

glucose levels for a long period of time (Laddha and Kulkarni, 2019). Insulin 
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mediates the clearance of glucose from blood, by activating glucose 

transport into the cytosol, however the absolute or relative lack of insulin 

and/or impaired insulin actions at its receptor significantly impairs the 

metabolism of circulating glucose (Ashcroft and Rorsman, 2004; Butler et 

al., 2003; Clark et al., 2001). The persistent increase in blood glucose is 

associated with frequent urination (polyuria), increased thirst (polydipsia), 

hunger and weight loss or related polyphagia, diabetic ketoacidosis and 

hyperosmolar coma (Baynes, 2015; Kitabchi et al., 2009). Moreover, DM 

and its associated complications are one of the leading causes of mortality 

worldwide. Severe hyperglycemia with ketoacidosis or the non-ketotic 

hyperosmolar syndrome (American_Diabetes_Association, 2014) are some 

of the most severe complications associated to diabetes, which could cause 

the death of DM patients (Qiu et al., 2017). 

Following the American Diabetes Association criteria categories 

(American_Diabetes_Association, 2020), diabetes can be classified into the 

following general categories: 

 

 Type 1 diabetes (T1D). It is also known as “insulin-dependent 

diabetes mellitus” or “juvenile diabetes”. It is related to autoimmune 

β-cell destruction, usually leading to absolute insulin efficiency and 

it is prone to ketoacidosis. This form of diabetes also includes those 

cases in which the etiology of β-cell destruction is unknown 

(American_Diabetes_Association, 2020; Goldenberg and 

Punthakee, 2013; Tao et al., 2015). 

 Type 2 diabetes (T2D). This form of diabetes is also known as “non 

insulin-dependent diabetes mellitus” or “adult onset diabetes”. T2D 

is provoked by a progressive loss of adequate β-cell insulin 

secretion, frequently on the background of insulin resistance. To 

compensate hyperglicemia, β-pancreatic cells respond by increasing 

insulin production leading to prediabetes. When β-pancreatic cells 

are exhausted and can no longer overproduce insulin, T2D evolves. 

Studies directly addressing the complications of prediabetes are 

limited, mostly because it is asymptomatic and largely under 

diagnosed in the general population. However T2D accounts for 

Complimentary Contributor Copy



Carmen Hierro-Bujalance and Monica Garcia-Alloza 4 

about 90% of all the cases of diabetes and prediabetes patients are 

in high risk to develop T2D.  

 Gestational diabetes mellitus. Gestational diabetes refers to 

glucose intolerance with onset or first recognition during pregnancy 

(Punthakee et al., 2018). This type of diabetes is diagnosed in the 

second or third trimester of pregnancy in mothers that had no overt 

diabetes prior to gestation (American_Diabetes_Association, 2020).  

 Diabetes due to other causes. These types of diabetes include a 

wide variety of relatively uncommon conditions, including 

genetically defined forms of diabetes (such as neonatal diabetes and 

maturity-onset diabetes of the young), diabetes associated with 

other diseases (such as cystic fibrosis) (Moran et al., 2018), drug- or 

chemical-induced diabetes (associated to glucocorticoids, in the 

treatment of HIV/AIDS) (Eckhardt et al., 2012), or diabetes 

associated to organ transplantation (American_Diabetes_ 

Association, 2020; Shivaswamy et al., 2016).  

 

Whereas DM classification remains an important issue to determine the 

best therapeutic approach, some individuals cannot be clearly classified as 

T1D or T2D patients at the time of diagnosis (American_Diabetes_ 

Association, 2020). T1D and T2D are heterogeneous diseases in which 

clinical presentation and disease progression may vary considerably. In fact, 

classical assumption that T2D only occurs in adults and T1D exclusively 

affects children, is no longer accepted and it is possible that T1D and T2D 

occur in both age-groups. Since the prevalence of T2D increases with age, 

the progressive aging of population seems to indicate that the “diabetes 

epidemic” will continue (Wild et al., 2004). In line with this idea, DM could 

be prevented to a certain extent. Breast feeding to babies has been shown to 

reduce the risk of youth onset of T2D (Taylor et al., 2005). However, since 

the primary cause of T2D is excessive body weight and not enough physical 

activity (American_Diabetes_Association, 2020; Tao et al., 2015), the 

World Health Organization has recommended global physical activity and 

healthy nutrition for children to prevent diabetes (Willumsen and Bull, 

2020). Also, pharmacological approaches, like orlistat, approved for the 
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treatment of overweight and obese adolescents, might reduce the risk to 

develop diabetes (Rogovik et al., 2010). 

 

1.1.1. Peripheral Complications Associated to Diabetes Mellitus 

DM causes relatively specific long-term microvascular complications 

affecting the retina, kidneys and nerves that may end up provoking 

blindness, nephropathy and neuropathies respectively. Vascular damage can 

also cause foot ulcers (Noor et al., 2015) and affect gastrointestinal motility 

(Kishi et al., 2019). Additionally, DM increases the risk for cardiovascular 

disease and stroke (Goldenberg and Punthakee, 2013; Laddha and Kulkarni, 

2019). The ultimate mechanisms for observed disturbances are not 

completely known, however, it has been shown that DM contributes to the 

progression of oxidative stress (Nasrallah et al., 2014), affects metabolic, 

genetic and hemodynamic systems by activation of polyol, protein kinase C 

(Sharma et al., 2017) or hexosamine pathways and increases advanced 

glycation end products formation (Mima, 2013). As previously stated, 

peripheral micro and macrovascular complications associated with T2D, 

including neuropathies, retinopathies or nephropathies, have been widely 

studied (Rosenson et al., 2011), and central complications associated with 

long-term metabolic alterations, have also received a great deal of attention 

(Craft, 2012). In this context, metabolic disease not only increases the 

incidence of atherosclerotic cardiovascular and peripheral arterial disease, 

but cerebrovascular compromise is also observed (American_Diabetes_ 

Association, 2014). Moreover, many recent studies have focused on the 

relation between diabetes and its role in neurodegeneration, dementia and 

Alzheimer´s disease (AD) (Batista et al., 2018; Holscher, 2018; 

Wakabayashi et al., 2019). 

 

1.1.2. Brain Complications and Dementia Associated with Diabetes 

Mellitus: Role in Alzheimer´s Disease and Vascular Dementia 

The central nervous system (CNS) is greatly affected in diabetes, as both 

cerebral glucose and insulin levels are frequently abnormal, even when the 

disease is well controlled (McCall and Figlewicz, 1997; Northam et al., 

2009). Glucose is the primary energy source for cerebral metabolism, and, 
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given that the brain has a limited ability to store glucose or use alternative 

fuel sources, such as lactate, a continuous supply is essential (Amiel, 1997). 

Inadequate glucose availability (hypoglycemia) triggers a continuum of 

events, ranging from confusion through seizures, coma and ultimately death, 

unless appropriate action is taken (Northam et al., 2006). During a severe 

state of hypoglycemia intracellular calcium toxicity and excitotoxicity are 

observed. Acute hyperglycemia also disrupts blood-brain barrier and 

depresses cerebral blood flow, whereas chronic hyperglycemia is classically 

associated with cerebrovascular disease and neuropathy (McCall and 

Figlewicz, 1997). Neurotransmitter pathways may also be affected in 

diabetes, as insulin is involved in regulation of biogenic amines, including 

noradrenaline, dopamine and serotonin (McCall and Figlewicz, 1997). 

Diabetic ketoacidosis, as an acute, severe metabolic crisis, implies an 

increased risk of cerebral edema, which is thought to be precipitated by rapid 

changes in blood osmolarity (Carlotti et al., 2003). In line with these 

observations, besides the damaging effects of diabetes on different organs, 

cognitive alterations are also very common in diabetes patients, and include 

alterations in memory, executive functions, attention and academic 

performance (Allen et al., 2004; Biessels and Despa, 2018; Bober and 

Buyukgebiz, 2005; Gaudieri et al., 2008). Moreover, impairment at central 

level has also been detected in children with diabetes (Pourabbasi et al., 

2016). At early ages, physical growth, social and emotional development are 

important and stimulated by formal education and schooling. Therefore, any 

health condition which might have an impact on cognitive function could, 

in turn, affect other areas of child development including cognitive, social 

and emotional behavior (Brown RT, 2004).  

While the actual role of DM at central level, and the underlying 

mechanisms implicated are unclear, cognitive impairment is an important 

comorbidity of diabetes (Gudala et al., 2013; Koekkoek et al., 2015; Zhang 

et al., 2017). Among others, manifestation and prognosis of diabetes-

associated cognitive dysfunction varies depending on the type of diabetes 

and the age of the patient (Biessels et al., 2008). In line with these 

observations, adult diabetes patients are at high risk to suffer dementia 

related disorders (Brismar et al., 2007; Northam et al., 2006; Ristow, 2004; 
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Selvarajah and Tesfaye, 2006; Sima, 2004). The relationship between 

diabetes and cognitive dysfunction was already proposed in 1922 (Miles and 

Root, 1922). Following this idea, different prospective population-based 

studies have reported comparable findings on the risk of mild cognitive 

impairment in patients with diabetes. A hazard ratio of 1.5-1.6% for mild 

cognitive impairment has been observed in diabetes patients (Roberts et al., 

2014) and a hazard ratio of 1.2-1.4% for non-amnesic mild cognitive 

impairment (Luchsinger et al., 2007). In addition, the prognosis of mild 

cognitive impairment is worse in patients with diabetes than in patients 

without diabetes (Biessels and Despa, 2018). Moreover, two meta-analyses 

have reported a relative risk of conversion to dementia of 1.7% in diabetic 

patients with mild cognitive impairment, when compared with patients 

without diabetes (Li et al., 2016). Other studies have also reported similar 

outcomes (Biessels et al., 2006; Gudala et al., 2013; Zhang et al., 2017). 

Specifically, when the two most common causes of dementia, AD and 

vascular dementia (VaD) are analyzed, the relative risk for AD in diabetes 

patients increases 56%, and 127% for VaD, in comparison with non-diabetic 

patients (Gudala et al., 2013). Interestingly, diabetes is a risk factor to suffer 

AD, even after adjusting for vascular risk factors (Huang et al., 2014; Wang 

et al., 2012). However, recent studies have also pointed out that while the 

risk of AD and VaD is increased in association with diabetes, the cerebral 

burden of the AD pathology is not (Biessels and Despa, 2018). 

AD is the most common type of dementia, causing among 50-70% of 

the cases (Alzheimer’s_Association, 2016). The prevalence of AD reaches 

10-30% in the population over 65 years old (Masters et al., 2015) and 

increases with age. It has been estimated that there are over 47 million people 

worldwide suffering dementia, and by 2050 there will be 131 million 

patients (Roehr et al., 2017). AD is not only a first rate health issue but also 

a great societal and economic burden. In addition, it should be borne in mind 

that AD is a sporadic disease in 95% of cases, with a multifactorial and 

elusive origin (Martin-Maestro et al., 2017), and therefore it is still a 

pathology of unknown cause in most patients. The main neuropathological 

characteristics of AD are: i) amyloid-β (Aβ) peptide accumulation, which 

can be deposited extracellularly forming senile plaques or around blood 

Complimentary Contributor Copy



Carmen Hierro-Bujalance and Monica Garcia-Alloza 8 

vessels as cerebral amyloid angiopathy, ii) neurofibrillary tangles formation 

due to intraneuronal deposits of abnormal phosphorylated tau protein and 

iii) neuronal and synaptic loss, the best correlated characteristic with the 

duration and severity of the disease, especially in the last stages (Fulop et 

al., 2018; Serrano-Pozo et al., 2011). While these are the classical 

neuropathological features associated with AD, the concept of 

neurodegeneration has expanded in later years to include earlier alterations 

such as synaptic and dendritic lesions (Pozueta et al., 2013; Ziegler-

Waldkirch and Meyer-Luehmann, 2018), as well as disorders in adult brain 

neurogenesis (Crews et al., 2010; Jin et al., 2004; Li et al., 2008) circuit 

dysfunction and aberrant innervation (Palop and Mucke, 2016), or chronic 

state of neuroinflammation (Nizami et al., 2019). 

VaD is the second most common cause of dementia, responsible of 

approximately 15% of the cases (Kalaria, 2018). VaD is an heterogeneous 

pathology, that can range from multiple microinfarcts to small vessel 

ischemic disease or microvascular injury (Craft, 2009), all of which can be 

triggered by Aβ deposition as amyloid angiopathy in cerebral blood vessels 

(Greenberg et al., 2008). Although there is a well established relationship 

between vascular disease and degenerative Alzheimer’s pathology, amyloid 

angiopathy can also occur independently of AD (O’Brien and Thomas, 

2015), and it has been proposed that amyloid angiopathy contribution to 

cognitive decline might be independent of parenchymal amyloidosis (Boyle 

et al., 2015). Likewise, microglia/macrophages are found around vessels 

affected by amyloid pathology, which suggest extensive inflammation 

(Schrag and Kirshner, 2016). While it is possible to find a predictable pattern 

of disease progression in AD, there is no agreement on the pathological 

scheme for VaD (O’Brien and Thomas, 2015). Moreover, the borderlines 

between AD and VaD are blurred, and in many patients markers of vascular 

injury coexist with traditional AD hallmarks. In some cases AD features 

might be promoted by a specific form of vascular injury; on one hand blood 

brain barrier dysfunction may affect Aβ transport between brain and 

periphery, and thereby contribute to parenchymal and neurovascular Aβ 

deposition (Craft, 2009). On the other hand, AD and VaD pathology may 

cause vascular injury, as when Aβ-induced inflammation can lead to 
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endothelial dysfunction. The pathological consequences of vascular damage 

include also alteration of functional markers, such as increased reactive 

oxygen species or matrix-metalloproteinase activity (Garcia-Alloza et al., 

2009), all of which have been related, to a different extent, to neuronal death 

(Brown et al., 2009; Kim et al., 2017; Zhang and Murphy, 2007).  

Apart from clinical and epidemiological studies linking DM and 

dementia (Luchsinger et al., 2007; Luchsinger et al., 2004; Ott et al., 1996), 

some biochemical links between DM and AD and VaD have contributed to 

the association of metabolic disorders and central complications (for review 

(Baglietto-Vargas et al., 2016)) (Figure 1). Among others: i) insulin levels 

and insulin resistance are the parameters that best correlate with a higher risk 

to develop AD (Schrijvers et al., 2010). Insulin modulates many central and 

peripheral physiological processes and insulin resistance might relate to 

cognitive dysfunction and reduced glucose use at central level (Baker et al., 

2011). CNS insulin receptors are highly expressed in the basal forebrain, and 

in regions relevant for learning and memory, such as cortex and 

hippocampus. This is consistent with evidence showing that insulin 

influences memory (Craft, 2009), likely due to modulation of synaptic 

structure and function, long-term potentiation and CNS levels of 

neurotransmitters such as acetylcholine, of special relevance in AD 

(Schliebs and Arendt, 2006). ii) DM progression correlates with pancreatic 

amylin deposition, in a similar way to Aβ deposition in AD brains. 

Moreover, insulin, amylin and Aβ are degraded by neprilysin and insulin 

degrading enzyme. It has been postulated that an imbalance of substrates can 

affect the degradation rates and possibly influence the pathogenesis of AD 

and diabetes (Gotz et al., 2009); iii) on one hand Aβ oligomers may affect 

insulin signalling in hippocampal neurons (Zhao et al., 2008). Also, central 

Aβ oligomers may trigger peripheral glucose intolerance (Clarke et al., 

2015). On the other hand, insulin may also regulate Aβ levels by modulation 

of β and γ secretases (Eckman and Eckman, 2005; Farris et al., 2003). 

Accordingly, reduced brain insulin signalling increases tau phosphorylation 

and Aβ levels in mice (Jolivalt et al., 2008). iv) Extensive evidence supports 

Aβ toxicity in different states of aggregation (Kumar et al., 2016; Meyer-

Luehmann et al., 2008) and it seems that amylin, similar to Aβ, can induce 
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apoptotic cell death (Konarkowska et al., 2006; Matveyenko and Butler, 

2006). It is likely that amylin and Aβ aggregates alter cellular function by 

similar mechanisms, such as inducing reactive oxygen species (Craft, 2009) 

and inflammation. Albeit all the circumstantial links mentioned above, 

experimental data supporting a direct relationship between DM, EA and 

VaD are still limited, mostly because studying the mechanistic relationship 

of insulin resistance to AD and VaD is extremely complex and because there 

are no ideal animal models. 

 

 

Figure 1. Possible links between T2D, AD and VaD. 

 

2. TYPE 1 DIABETES MELLITUS 
 

2.1. Pathophysiology of Type 1 Diabetes Mellitus  
 

T1D is one of the most common endocrine and metabolic conditions 

(Katsarou et al., 2017), also known as an autoimmune diabetes. It has been 

estimated that approximately 49.000 children worldwide are affected (Desai 

and Deshmukh, 2019). T1D imposes enormous public health costs (Herman 

et al., 2018; Scott et al., 2019; Shumway et al., 2019), profoundly affects 

individual quality of life (Gutefeldt et al., 2020; Henriquez-Tejo and Cartes-

Velasquez, 2018; Wake et al., 2000) and it is associated with significant 

psychological morbidity (Northam et al., 2005; Sharif et al., 2018). 

T1D is a chronic disease characterized by insulin deficiency due to 

pancreatic β-cells loss that results in hyperglycemia (Atkinson, 2012; 
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Houlden, 2018; Katsarou et al., 2017). The destruction of β-cells is usually 

the result of an autoimmune process (70-90%), which is concomitant with 

the formation of T1D-associated autoantibodies (Janez et al., 2020; Katsarou 

et al., 2017). However, in a smaller subset of patients, no immune response 

or autoantibodies are detected, and the cause of β-cell destruction is 

unknown (idiopathic T1D or type 1b diabetes) (Janez et al., 2020; Katsarou 

et al., 2017). In T1D the presence of autoantibodies occurs months or even 

years before symptoms onset. These islet-targeting autoantibodies may 

affect insulin, 65 KDa glutamatic acid decarboxylase, insulinoma-associated 

protein 2 or zinc transporter 8 (Ilonen et al., 2013; Krischer et al., 2015; 

Ziegler et al., 1999), all of which are proteins associated with secretory 

granules in β-cells. Therefore, these are biomarkers related to the 

autoimmune response of the disease (Katsarou et al., 2017) that can be used 

to identify and study individuals at risk of developing T1D (Katsarou et al., 

2017). Pathogenesis of T1D is also thought to involve T cells-mediated 

destruction of β-cells within the pancreatic islets (Katsarou et al., 2017; Kent 

et al., 2017). Hybrid insulin peptides act as key antigens for autoreactive T 

cells and cause loss of self-tolerance in patients (Desai and Deshmukh, 

2019). However, what triggers the first-appearing β-cell-targeting 

autoantibody is unclear (Katsarou et al., 2017). The etiology of β-cell-

targeted auto-immunity is not completely understood, and it probably 

includes a combination of environmental and genetic factors that trigger or 

permit the autoimmune response against the β-cells (Katsarou et al., 2017). 

In this sense, many etiological factors may contribute to the observed 

increase in the incidence of T1D; it has been suggested that geographical 

location may determine both, genetic predisposition and environmental 

factors, although the ultimate cause remains elusive (Desai and Deshmukh, 

2019; Pugliese, 2014). 

The pathogenesis and evolution of T1D have been suggested to be a 

continuum that can be divided into three stages: detection of autoantibodies 

and progress to β-cells destruction, dysglycemia and finally hyperglicemia-

associated symptoms (Insel et al., 2015). It has been classically assumed that 

T1D is mainly developed during childhood or adolescence (Atkinson, 2012), 

but it seems certain that T1D can develop at any time along lifespan, even 

Complimentary Contributor Copy



Carmen Hierro-Bujalance and Monica Garcia-Alloza 12 

in individuals aged >80 years old (Thomas et al., 2018; Thunander et al., 

2008). Most patients with T1D are adults, partly because children diagnosed 

with T1D survive to adulthood, but also because of new cases diagnosed in 

adults (Skyler et al., 2017). The identification of T1D may be challenging, 

and T1D may be misdiagnosed as T2D in adults aged >30 year (Atkinson, 

2012; Thomas et al., 2018). Proper identification of T1D is extremely 

important because these patients need to receive immediate insulin therapy 

(Pourabbasi et al., 2016) and reach optimal glycemic control. Early control 

of T1D delays microvascular and macrovascular complications (Katsarou et 

al., 2017) and prevents the onset of diabetic ketoacidosis, which is associated 

with an increased risk of death. Although intensive glycemic control has 

reduced the incidence of microvascular and macrovascular complications, 

the majority of patients with T1D are still developing these complications. 

The use of insulin pumps and techniques to reduce injection pain have 

improved therapeutic success and compliance in children. Nevertheless, 

such approaches are not always available (Alsaleh et al., 2014). At present, 

T1D has no cure, and patients require frequent blood glucose monitoring 

along with insulin therapy (Aleppo and Webb, 2018). Major research efforts 

are needed to achieve early diagnosis, prevent β-cell loss and develop better 

treatment options to improve the quality of life and prognosis of those 

affected (Janez et al., 2020; Katsarou et al., 2017). 

 

 

2.2. Brain Complications Associated with Type 1 Diabetes  

in Patients 
 

There is a large body of literature documenting pathophysiological CNS 

changes and neurocognitive deficits in adults with T1D (Brands et al., 2005; 

Geissler et al., 2003; Makimattila et al., 2004; Musen et al., 2006; Wessels 

et al., 2006), associated to long-term severe hypoglycemia or chronic 

hyperglycemia. Among them, lower density of cortical gray matter and 

white matter lesions have been described (Bednarik et al., 2017; Pell et al., 

2012; Sima, 2010; van Duinkerken et al., 2018). Following this idea, 

different brain mapping studies of neural structure, with magnetic resonance, 
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have demonstrated changes in the overall brain architecture of patients with 

T1D (Aye et al., 2011; Melberg et al., 1999; Pell et al., 2012). Studies that 

follow participants across childhood and into adulthood may be particularly 

informative in documenting the impact of T1D on brain development. The 

Royal Children´s Hospital, Melbourne Cohort Study recruited newly 

diagnosed T1D, together with a healthy control group, and 12 years later a 

subset of the cohort underwent neuroimaging with magnetic resonance 

imaging to document structural changes in the CNS. In T1D patients, they 

observed an age-related volume loss and T2 relaxation time changes in the 

thalamus and the lentiform nuclei (Pell et al., 2012). Using single photon 

emission computed tomography Tupola et al. (Tupola et al., 2004) observed 

a negative left-right index in cerebral blood flow, in a sample of prepubertal 

patients with diabetes, in contrast to the left-greater-than-right-hemispheric 

asymmetry, usually observed in healthy children, suggesting that the left 

hemisphere is preferentially affected in diabetes. In addition, early-onset 

severe hypoglycemia may have an effect on gray matter volume (Ho et al., 

2008) and magnetic resonance imaging studies have reported some 

structural abnormalities in children, particularly mesial temporal sclerosis, 

suggesting hippocampal damage (Ho et al., 2008). Increased rates of cortical 

atrophy have been described in a number of reports (Ferguson et al., 2005; 

Frokjaer et al., 2013; Lobnig et al., 2006), including a study of young adults 

with relatively short disease duration (Lunetta et al., 1994). Similar atrophic 

changes in adults with T1D have been interpreted as a form of accelerated 

aging (Northam et al., 2006). Brain metabolite profile has also been 

examined using magnetic resonance spectroscopy in adults with T1D. 

Increased myo-inositol, which is a membrane constituent that reflects 

proliferation or activation of glia, and choline-containing compounds, which 

provide an insight into the metabolism of myelin and other phospholipids 

cell membranes (Burtscher and Holtås, 2001), were described (Kreis and 

Ross, 1992; Makimattila et al., 2004). The study carried out by Makimattila 

et al. showed that N-acetyl aspartate levels in T1D patients did not differ 

from control levels (Makimattila et al., 2004), although they were reduced 

in the study of Kries and Ross (Kreis and Ross, 1992), in which some of 

their patients were recovering from ketoacidosis.  
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2.3. Cognitive Impairment in Patients with Type 1 Diabetes 
 

The association between DM and cognitive alterations has been largely 

reported at different levels. The evaluation of child development and 

cognitive changes has been the subject of numerous studies, some of which 

have reported correlations between diabetes and cognitive function. 

However, the pattern of deficits varies across studies and patient subgroups 

(Desrocher and Rovet, 2004).  

The number of neuroimaging studies of youth to date is limited and 

understanding the impact of T1D on neurodevelopment is still based largely 

on inferences drawn from neurocognitive studies and from adult 

neuroimaging reports (Northam et al., 2009). Children with T1D can display 

subtle changes in cognitive development, particularly if the onset of diabetes 

occurs before 7 years of age (Ryan et al., 2016). Gaudieri et al. designed a 

meta-analysis to evaluate diabetes and cognition in children and they 

detected that different domains of cognitive function are affected by 

diabetes. They also reported that this correlation is more prominent in 

patients with early onset diabetes (Gaudieri et al., 2008). Other studies have 

corroborated more evident cognitive difficulties in children with early-onset 

disease (≤ 5 years old) (Northam et al., 2006; Ryan, 2006). In this sense, 

children with early-onset disease may show a possible disruption of 

language development, before skills consolidate, due to an unusual maturing 

of the CNS (Northam et al., 2006). 

Children with diabetes may have lower levels of intelligence, compared 

with children without diabetes (Hannonen et al., 2003; Northam et al., 2009). 

In addition, Hershey et al. evaluated the association between hypoglycemic 

episodes and memory changes in children with diabetes and they showed a 

reduction in the spatial memory of children with T1D (Hershey et al., 2005). 

Ly et al. have also reported an impairment of executive function in children 

with diabetes in comparison with their healthy counterparts (Ly et al., 2011), 

and these changes in executive function might be independent of glycemic 

control in T1D children (Ohmann et al., 2010). Controlled, longitudinal 

studies are particularly informative in documenting illness-related changes 

in the CNS (Northam et al., 2009). The Diabetes Control and Complications 
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Trial (Nathan, 2014) showed no deterioration of the cognitive function in 

either conventionally or intensively treated patients over an 18-year period. 

However, this study did not enroll participants at diagnosis and recruitment 

was limited to those >13 years of age. Thus, the trial was unable to document 

any illness-related effects that may have occurred before the recruitment. 

Other studies support that there are no differences between children with 

diabetes and control children when IQ, specific neurocognitive skills or 

academic achievement are measured (Rovet and Ehrlich, 1999). However, 

years after diagnosis verbal IQ declines and academic achievement is limited 

(Rovet and Ehrlich, 1999). In general, the pattern of deficits observed in 

children is broadly similar to that seen in adults with diabetes (Brands et al., 

2005), with the exception of language impairment, not described in adults. 

Altogether, the results of several studies have clearly demonstrated that 

diabetes is associated with cognitive malfunction in children. Language, 

attention, memory, information-processing speed and executive functions 

are the specific skills that are most affected in children with diabetes 

(Desrocher and Rovet, 2004). Children have high cerebral energy needs 

associated with brain growth and “neuronal purring” and may be more 

sensitive than adults to glucose fluctuations (AL McCall, 1997; Ryan, 2006). 

However, the basic mechanism through which diabetes affects academic 

performance is not yet known. One suggestion is that diabetes causes 

academic disadvantages in children through absenteeism, which 

consequently result in different cognitive and learning impairments (Glaab 

et al., 2005; Parent et al., 2009; Wodrich et al., 2011). 

Epidemiological data on T1D and dementia are relatively spare 

(Biessels and Whitmer, 2020). This is because T1D is much less common 

than T2D and only recently individuals with T1D have been living to old 

age (Petrie et al., 2016). The largest study to date in T1D is a retrospective 

cohort study of individuals hospitalized for T1D (Smolina et al., 2015). This 

study examined the risk of dementia in over 300.000 people with T1D and 

a reference cohort. Those with T1D had a 65% increased risk of dementia. 

Also a meta-analysis of neurocognitive functioning in adults with T1D 

provides convincing evidence of subtle cerebral impairment (Brands et al., 

2005). Compared with non-diabetic groups, adults with T1D had 
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significantly lower scores on general intelligence, speed of information 

processing, psychomotor efficiency, attention, mental flexibility and visual 

perception (Dejgaard et al., 1991; Ferguson et al., 2005; Lobnig et al., 2006; 

Perros et al., 1997). These findings are consistent with preliminary findings 

of CNS abnormalities described above. These decrements generally remain 

stable over time, with little changes relative to people without diabetes 

(Jacobson et al., 2007). However, there might be subgroups of patients, 

particularly those with advanced microvascular complications, in whom 

severity of cognitive dysfunction can worsen substantially over time 

(Nunley et al., 2015; Ryan et al., 2016). On the other hand, other researchers 

have pointed out that diabetes can induce cognitive impairment due to an 

affectation of neuronal structures (Aye et al., 2011; Bober and Buyukgebiz, 

2005; Pell et al., 2012). It seems that an earlier age of onset and longer 

duration are risk factors for worse cognitive performance in T1D population 

(Li et al., 2017). Meanwhile, it remains unclear whether individuals with 

older age of onset of T1D exhibit the same pattern of impairment seen in the 

typical childhood-onset population of T1D (Biessels and Whitmer, 2020). 

 

 

2.4. Brain Complications in Type 1 Diabetes Animal Models 
 

Different animal models have been developed to reproduce T1D. 

Among others, spontaneous models of T1D such as the non-obese diabetic 

(NOD) mouse (Saravia et al., 2001) or BB/W rats (Li et al., 2002), as well 

as pharmacological approaches such as streptozotocin- (STZ) (Dheen et al., 

1994) or alloxan-induced models (Federiuk et al., 2004). These animal 

models present brain complications, including increased expression of 

hypothalamic hormones (Dheen et al., 1994; Saravia et al., 2001), intimately 

linked to a marked hyperactivity of the hypothalamic-pituitary-adrenal axis 

(Chan et al., 2003; Zelena et al., 2006) and higher susceptibility to stress 

(Magarinos and McEwen, 2000; Sharif et al., 2018). High-circulating 

glucocorticoid levels are also associated with diabetes in STZ-induced 

diabetes mice (Revsin et al., 2008) and rats (Stranahan et al., 2008), showing 

that elevated glucocorticoids contribute to the impairment of synaptic 

Complimentary Contributor Copy



Cognitive Alterations in Preclinical Models of Diabetes Mellitus 17 

plasticity and neurogenesis, with associated learning and memory deficits 

(Stranahan et al., 2008). Therefore, the hippocampus, a major limbic 

structure rich in gluococorticoid receptors and very sensitive to stress, seems 

to be strongly affected by diabetes (Eichenbaum, 2000; Kim and Diamond, 

2002; Knierim, 2015; Lupien and Lepage, 2001).  

Previous studies have described hippocampal astrogliosis, low 

proliferation rates in the dentate gyrus, poor neurogenesis and reduced 

number of hilar neurons in two models of T1D; NOD mice and the STZ-

induced model (Beauquis et al., 2006; Revsin et al., 2005; Saravia et al., 

2004; Saravia et al., 2002). Nonetheless, some changes on the brain are 

shared by the encephalopathy associated to aging (Saravia et al., 2007), 

suggesting that the diabetic brain could be considered as an aged brain. On 

the other hand, some studies have focused on the relationship between T1D 

and AD. Ramos-Rodriguez et al. showed in APP/PS-STZ diabetic mice that 

there was a shift in Aβ soluble/insoluble levels, and more toxic soluble 

species were increased, while senile plaques deposition was reduced 

(Ramos-Rodriguez et al., 2016). Previous studies have also reported that 

genetic ablation of tau mitigates cognitive impairment induced by T1D 

(Abbondante et al., 2014) and an increment on hyperphosphorylated tau and 

spontaneous bleeding is also associated with spatial cognitive dysfunction 

in AD mice with induced T1D (Ramos-Rodriguez et al., 2016), as a feasible 

link between T1D and AD. 

 

 

2.5. Cognitive Impairment in Experimental Models  

of Type 1 Diabetes 
 

On top of the alterations observed in the CNS, experimental diabetes is 

also linked to cognitive impairment and changes in behavior (Amorim et al., 

2017; Wang et al., 2018). Although cognitive deficits might be connected, 

at least in part, to neurotoxic effects of hyperglycemia and changes in 

neurotransmission and neuronal functionality, the relationship between 

neuronal alterations and their correlation with behavior has not been fully 

deciphered yet. Previous studies have shown that the reduction of 
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hippocampal neurogenesis is a common feature to aging, stress-induced 

depression and diabetes (Beauquis et al., 2008; Nam et al., 2019; Vignisse 

et al., 2017), that may cause cognitive impairment. In fact, Alvarez et al. 

(Alvarez et al., 2009) have shown a correlation between the diabetic status 

in STZ-induced T1D, and hippocampal neurogenic alterations, accompanied 

by behavioral alterations. Also, Li et al. have reported in BB/W rats that 

hippocampal neuronal apoptosis and low expression of IGF-I are 

accompanied by functional cognitive impairment in the Morris water maze 

(Li et al., 2002).  

On the other hand, classical markers of AD pathology have also been 

assessed in T1D models, in connection with cognitive alterations. Following 

this idea, cognitive decline observed in T1D could be caused by a tau-

dependent mechanism. According to this, Abbondante S. et al. (Abbondante 

et al., 2014) showed that tau is a key molecular factor responsible for the 

induction of cognitive deficits observed in T1D. In line with these 

observations Ramos-Rodriguez et al. also showed that by inducing T1D in 

an AD mouse model, phospho-tau levels are increased and episodic and 

working memory are significantly worsened (Ramos-Rodriguez et al., 

2016).  

 

 

3. TYPE 2 DIABETES MELLITUS 
 

3.1. Pathophysiology of Type 2 Diabetes Mellitus 
 

T2D is the most prevalent form of diabetes and it preferentially affects 

middle-aged and elderly people. It accounts for up to 90% of all cases of 

diabetes. Its prevalence reaches 400 million people all over the world and 

by 2035 there will be 592 million patients (Xia et al., 2017). Sedentary life 

style and obesity are well-established risk factors (Ristow, 2004) and in 

western countries, with increasingly older populations, the prevalence of 

T2D is raising, indicating that the diabetes epidemic will continue (Zhou et 

al., 2016). Altogether, the etiology of T2D is multifactorial (Lau et al., 

2015), so the interaction between genetic mutations, lifestyle and 
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environmental factors determines the likelihood of the disease (Lau et al., 

2015; Zhao et al., 2015).  

Clinically, T2D is a process that extends along several stages (Ripsin et 

al., 2009). Insulin resistance develops in early stages of the disease, due to a 

decreased ability of the cells to properly capture insulin, which predisposes 

to hyperglycemia (Kahn et al., 2014). Given the inability of the individual 

to use insulin, β-pancreatic cells increase the synthesis and secretion of the 

hormone, resulting in compensatory hyperinsulinemia. Thanks to the 

increase in insulin, normoglycemia is maintained in the peripheral tissues, 

at early stages of the disease. To account for these early alterations, 

prediabetes is a practical and convenient term that refers to impaired fasting 

glucose, impaired glucose tolerance or glycated hemoglobin, each of which 

places individuals at high risk of developing diabetes and its complications 

(Goldenberg and Punthakee, 2013). Prediabetes is a metabolic state that lies 

between glucose homeostasis and T2D (Pal et al., 2018). While not all 

individuals with prediabetes will necessarily progress to diabetes, the 

prevalence of prediabetes in adult population is rapidly rising, estimated as 

35% in the UK and USA and up to 50% in China (Pal et al., 2018), 

significantly increasing the population at risk of developing over T2D.  

As diabetes progresses, metabolic balance is broken when β-pancreatic 

cells get exhausted, are depleted and die (Gerich, 1998; Lawlor et al., 2017). 

Damage of β-cells leads to the secretion of specific markers like proinsulin 

(Lee et al., 2011) along with amyloid fibrils (Jurgens et al., 2011), as 

pathological markers of pancreatic destruction. Amyloid fibrils are toxic to 

islet cells, leading to β-cell apoptosis (Pandey et al., 2015). The decrease in 

β-pancreatic cells continues as the disease progresses (Rahier et al., 2008), 

and ultimately T2D manifests with uncontrolled increases in blood glucose 

levels (Kahn et al., 2014; Lawlor et al., 2017), frequently requiring 

exogenously administered insulin at an advanced stage.  

T2D is an important cause of morbi-mortality and causes great costs to 

the health system. According to data from the American Diabetes 

Association, the total levels of diagnosed diabetes amounted to 327 billion 

dollars in 2017, so there is an urgent need to intervene in lifestyle and at 

pharmacological level, to prevent or delay T2D progression (Zhou et al., 
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2016). Likewise, it is a must to improve its early detection and a large body 

of data produced by “-omics” technologies, such as genomics/epigenomics, 

transcriptomics, proteomics and metabolomics, suggest that many potential 

biomarkers might be helpful in the prediction and early diagnosis of T2D 

(Kussmann et al., 2013). At present, commonly used biomarkers for 

diagnosis and monitoring of T2D are glycosylated hemoglobin, fasting 

plasma glucose levels and the oral glucose tolerance test (Ozery-Flato et al., 

2013; Vijayakumar et al., 2017). Also, the T2D risk stratification could use 

cardiovascular biomarkers, such as high sensitivity troponin and B-

natriuretic peptide, that play an important role in the pathophysiological 

process (Scirica, 2017).  

T2D is related to various peripheral alterations such as hypertension, 

obesity, arteriosclerosis, dyslipidemia or hypercholesterolemia, also leading 

to an increased risk of cardiovascular disease (Ahmed and Goldstein, 2006a; 

Ahmed and Goldstein, 2006b). In the same way, prospective and 

epidemiological studies have reported that prediabetes and T2D are 

associated with CNS complications and increased risk of dementia 

(Chatterjee and Mudher, 2018; Chen et al., 2015; Cui et al., 2014; Karvani 

et al., 2019). 

 

 

3.2. Brain Complications Associated with Type 2 Diabetes  

in Patients 
 

As previously described, it is plausible that typical neurodegenerative 

disorders and T2D share common genetic and/or biochemical features 

(Ristow, 2004). The brain is actively involved in systemic glucose 

regulation. In fact there are neurons in the CNS which respond to high or 

low levels of glucose, and they are especially relevant in several nuclei of 

the hypothalamus and the brainstem (Lopez-Gambero et al., 2019). On the 

other hand, chronic hyperglycemia decreases the elasticity of smooth muscle 

cells, reducing the ability of blood vessels to maintain sufficient supply of 

blood and nutrients to brain tissue (Brownlee, 2005; Ergul, 2011). As a 

consequence, patients with T2D present subcortical infarcts (Pruzin et al., 

Complimentary Contributor Copy



Cognitive Alterations in Preclinical Models of Diabetes Mellitus 21 

2017), closely related with arteriosclerosis (Ighodaro et al., 2017). Likewise, 

patients with T2D present a decrease in spontaneous neuronal activities in 

the cingulate gyrus and bilateral thalamus/caudate (Cui et al., 2014), as well 

as altered functional connectivity of the thalamus in the middle temporal 

gyrus and other cortical regions. These alterations correlate with dysfunction 

of neurons and fiber tracts (Chen et al., 2015) and T2D patients present 

aberrant or reduced functional connectivity between the hippocampus and 

other regions of the brain (Karvani et al., 2019). In addition, studies on T2D 

patients reveal a reduction in total white matter, gray matter, cortical, 

subcortical and hippocampal volumes (Bernardes et al., 2018; Ogama et al., 

2018), supporting the idea that the long-lasting hyperglycemia negatively 

affects brain structures and accelerate brain atrophy (Karvani et al., 2019).  

As previously shown, T2D is highly related to dementia, particularly 

VaD and AD (Chatterjee and Mudher, 2018). Surprisingly, specific 

assessment of AD pathology in T2D has revealed that diabetic patients 

present fewer amyloid plaques in the cortex and hippocampus when 

compared with patients without T2D (Ahtiluoto et al., 2010; Beeri et al., 

2005; Nelson et al., 2009). On the other hand, depression is twice as common 

in T2D patients (Moulton et al., 2015), and correlations between depression 

and insulin resistance have also been reported (Kan et al., 2013). Psychotic 

illnesses, including schizophrenia, also seem to be more prevalent in patients 

with metabolic syndrome (Newcomer, 2007). In line with these observations 

a 2016 meta-analysis showed that the first-episode psychosis was associated 

with increased insulin resistance and impaired glucose tolerance (Perry et 

al., 2016). Similar associations have been observed for anxiety and bipolar 

disorders or stress (Czepielewski et al., 2013; Krajnak, 2014; Smith et al., 

2013).  

On the other hand, whether prediabetes state of hyperinsulinemia can 

induce CNS alterations remains controversial. Nevertheless, prediabetes is 

also associated with an increased risk of structural brain abnormalities. 

Among these a study with elderly patients (65 years and older) has defined 

that dysglycemia, with increased HbA1c, was associated with a higher 

number of brain infarcts, white matter hyperintensities and a significant 

decline in gray matter volume (Reitz et al., 2017). These structural 
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abnormalities are thought to be, like in T2D, of micro- and macrovascular 

origin. In contrast to this hypothesis, the Atherosclerosis Risk in 

Communities Neurocognitive Study has reported no association of 

prediabetes with lacunar infarcts, white matter hyperintensities, cerebral 

microbleeds, or smaller brain volumes in an elderly population study 

(Schneider et al., 2017). However, the development of structural brain 

abnormalities may start at middle age, and to our knowledge no studies have 

focused on middle-aged population. Also, a recent study demonstrated that 

prediabetes is associated with cerebral small-vessel disease and brain 

atrophy. This study provides further evidence that prediabetes is not just an 

“early estate” and stresses that prediabetes provides an opportunity for the 

prevention of brain disease (van Agtmaal et al., 2018). With all this in mind, 

in recent years, more and more studies have focused on the relationship 

between prediabetes, T2D and CNS alterations, with special interest in 

neurodegeneration and dementia although the mechanisms involved have 

not been completely elucidated. 

 

 

3.3. Cognitive Impairment in Patients with Type 2 Diabetes 
 

Epidemiologic studies have reported that T2D is an independent risk 

factor for cognitive impairment (Allen et al., 2004; Stewart and Liolitsa, 

1999). As explained above, the increased risk to develop cognitive deficits 

is related to a number of additive or synergistic factors, affecting brain 

structure and function, microvascular disease, adiposity, depression, 

cardiovascular disease, hypothalamic-pituitary-adrenal axis deregulation, 

inflammation, dyslipidemia, β-amyloid deposition, acetylcholine, 

hypertension or insulin resistance, among others (Karvani et al., 2019). 

Studies evaluating the impact of T2D on cognitive skills have reported 

an accelerated decline over a period of 5 years (Yates et al., 2012). Cognitive 

decrement concerns verbal memory, executive function, and attention and 

information processing speed abilities. The reduction of these domains is 

related with longer duration of diabetes, poor glycemic control, presence of 

microvascular complications and comorbidities (Karvani et al., 2019). 
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Pasquier et al. concludes that the most common diabetes-related cognitive 

profile involve slowing in motor control, difficulty in retrieving learned 

material and impairment in attention and problem solving processes 

(Pasquier, 2010). A cohort study exploring cognitive changes over a 20-year 

period reported that middle-age individuals with T2D experienced 19% 

greater cognitive age-related decline when compared with non diabetic 

patients (Rawlings et al., 2014). On the other hand, white matter 

abnormalities are also correlated with the degree of impairment in 

information processing speed, attention and executive functioning (Zhang et 

al., 2019b). Interestingly, increased task difficulty and working memory load 

in T2D patients led more severe frontal cortex dysfunction and worse 

cognitive performance (Chen et al., 2014). Also, Kaur et al. reported an 

association between visceral fat, characteristic in T2D, and cortical thickness 

in the posterior cingulate cortex (Kaur et al., 2015). Deregulation of the 

default mode network is common in dementia and cognitive impairment, 

and the authors suggest that this thickening of the posterior cingulate cortex 

may be an early marker for potential cognitive decline.  

Mechanisms of diabetes-associated cognitive dysfunction are coming 

under greater scrutiny, as the prevalence of diabetes and dementia are 

closely related to aging. The vast majority of the research is conducted in 

populations > 65 years, and just a handful of studies focus on cognitive 

complications of diabetes in midlife (Karvani et al., 2019). As already noted, 

T2D has been associated with impaired neurocognitive function in the form 

of dementia, mostly AD and VaD (Pal et al., 2018). An increased risk of 

dementia in T2D populations has been demonstrated in several studies and 

meta-analysis with a combined overall relative risk of 1.51%, while more 

than one fifth of subjects with dementia have T2D (Moon, 2016). The 

growing body of literature on the metabolic contribution of T2D to the AD 

neurodegenerative process has led to the description of “type 3 diabetes” 

(Leszek et al., 2017). However, this term remains controversial and further 

studies are needed. 

In addition, it has also been shown that prediabetes itself may lead to a 

mild cognitive impairment, leading to the development of dementia in many 

cases. The factors that play a part in this progression are a combination of 
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discrete elements that reduce cognitive reserve and accelerate 

neurodegenerative processes. Some studies have shown that prediabetic 

dysglycemia is associated with lower performance in language, speed and 

visuospatial function in elderly patients (Reitz et al., 2017). Moreover, many 

longitudinal studies involving prediabetes have diagnosed mild cognitive 

impairment in these patients. When the risk of progression of mild cognitive 

impairment to AD is assessed, longer duration of diabetes seems to be 

associated with an increased risk of progression, while the use of statins and 

oral hypoglycemic agents reduce this risk. In this sense, having multiple 

cardiovascular risk factors also increases the risk of progression from mild 

cognitive impairment to dementia in people with metabolic syndrome (Pal 

et al., 2018). 

 

 

3.4. Brain Complications in Type 2 Diabetes Animal Models 
 

Rodents are the first choice to study human disease, due to the short 

generation time and economic considerations (Gheibi et al., 2017) and they 

are at the forefront of scientific advancements on obesity and diabetes 

mellitus (Kleinert et al., 2018). Diet-induced obesity is a widely used 

paradigm to study the interaction of diet and genes in manifest obesity and 

insulin resistance, developing obesity and impairment of glucose 

metabolism. C57Bl/6J mice are commonly used, since they are prone to 

develop these characteristics (Kleinert et al., 2018). Combination of high-fat 

diet (HFD) with low dosage injections of STZ is also used to model the 

transition from the pre-diabetic insulin-resistant state to overt T2D (Skovso, 

2014). However, it is also possible to find genetic rodent models to 

reproduce T2D. Among them, functional leptin knock out (db/db) and leptin 

receptor knock out (ob/ob) mice (Coleman, 1973; Coleman and Hummel, 

1969; Hervey, 1959) are widely used.  

As previoulsy described in patients, severe brain complications have 

been observed in these animal models. Both ob/ob and db/db (Ma et al., 

2015; Ramos-Rodriguez et al., 2013) mice present a significant reduction in 

brain weight and further assessment reveals a significant brain atrophy that 
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affects the cortex preferentially, while the hippocampus is also affected, as 

the disease progresses (Infante-Garcia et al., 2016). Interestingly, frontal 

cortex tissue from db/db mice shows changes in proteins involved in energy 

metabolism, cellular structure and neural functioning. Similar changes are 

observed in the hippocampus, accompained by additional effects on cellular 

signalling proteins (Ernst et al., 2013). Following these observations, db/db 

mice display synaptic and neuronal alterations, such as decreased number of 

neurons in the cortex and the hippocampus (Infante-Garcia et al., 2018; Ma 

et al., 2015; Ramos-Rodriguez et al., 2013; Ramos-Rodriguez et al., 2017), 

also observed in ob/ob mice (Bereiter and Jeanrenaud, 1979). Reactive 

microglia also seems to be increased after transient cerebral ischemia is 

induced in T2D animals, acompained by leukocyte ativation (Ma et al., 

2015; Zhang et al., 2019a). Sustained inflammation, in compromised 

angiogenesis, is also observed in ob/ob mice (Zhao et al., 2017) and an 

overall incrase in cerebral oxidative stress is detected in diabetic mice (Ma 

et al., 2015; Zhao et al., 2017). Moreover, recent studies report a significant 

impairment in db/db animals to remodel the neurovascular unit (Hayden et 

al., 2019). Likewise, alterations in proliferation and neurogenesis in brains 

from T2D models have been described. While there is an overall reduction 

in brain proliferation and neurogenesis, associated with aging, (Ho et al., 

2013; Ramos-Rodriguez et al., 2014), the results remain controversial; some 

studies show an increase in the number of proliferating cells and immature 

neurons in T2D mice, when compared with control animals (Hamilton et al., 

2011; Ramos-Rodriguez et al., 2014). Meanwhile, others studies defend a 

decrease in these processes in the hippocampus (Stranahan et al., 2008; Tang 

et al., 2019; Yi et al., 2009).  

Interestingly, induction of prediabetes by HFD seems to be enough to 

provoke a brain insult. Prediabetic state may induce synaptic loss as well as 

cortical thinning. However, different paradigms seem to be differentially 

affected and hippocampal synaptic function and long-term potentiation are 

preserved in C57Bl6 mice on HFD for up to ten moths (Mielke et al., 2006). 

In line with these observations, studies focusing on central cell proliferantion 

and neurogenesis have shown that these processes are not significantly 

impaired in C57Bl6 mice on HFD (Hierro-Bujalance et al., 2020; Ramos-
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Rodriguez et al., 2014). Other studies with rats have observed that HFD 

completely abolishes insulin-mediated microvascular responses and protein 

kinase B phosphorylation but it does not alter the capillary density in the 

hippocampus, which is associated with a significantly decreased cognitive 

function (Fu et al., 2017). HFD also elicits insulin resistance, evidenced by 

a significant decrease in tyrosine phosphorylation of insulin receptor and an 

increase in serine phosphorylation of insulin receptor-1. These changes are 

accompanied by inflammatory (NFκB, JNK) and stress (p38 MAPK, 

CHOP) responses in the brain (Kothari et al., 2017), suggesting that changes 

in insulin sensitivity might contribute to cognitive impairment associated 

with the HFD administration in mice (Kothari et al., 2017).  

It should be noted that chronic hyperglycemia can lead to tau-

hyperphosphorylation (Huang et al., 2020), and this has also been observed 

in db/db mice (Infante-Garcia et al., 2018) and Zucker rats (Manning et al., 

1993) that also show latter accumulation of amyloid β in the brain. 

Moreover, effects observed in prediabetes models are more severe when 

prediabetes is induced in AD mice that present a significant increase of 

neurite (Ramos-Rodriguez et al., 2017). These observations are worsened in 

mixed animal models harboring AD and overt T2D (Infante-Garcia et al., 

2016; Ramos-Rodriguez et al., 2015). APP/PS1xdb/db mice, as a mixed 

murine model of AD and T2D that shows reduced cortical size, neuronal 

branching simplification and reduction of dendritic spine density, when we 

compared with AD or T2D mice alone, supporting that brain complications 

are more severe when T2D and AD coexist in long term.  

 

 

3.5. Cognitive Impairment in Experimental Models of T2D  
 

Studies on the above mentioned animal models indicate that 

hyperglycemia results in cognitive deficits and impairment of learning and 

memory abilities (Biessels et al., 1998). Cognitive problems are detected in 

db/db mice, when assessed in different tests. Dinel et al. (Dinel et al., 2011) 

have shown that db/db mice display impaired spatial-recognition memory, 

associated with increased levels of pro-inflammatory cytokines (IL-1β, TNF 
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and IL-6), suggesting an interaction between inflammation and memory 

impairment. In line with these observations db/db mice are also impaired in 

the Y-maze, supporting that memory loss is mediated by hyperglicemia-

driven neuroinflammation and compromise of the blood brain barrier (Rom 

et al., 2019). According with these results, Ramos-Rodriguez et al. also 

observed an age dependent cognitive deterioration, including episodic and 

spatial memory, in db/db mice by 26 weeks of age (Ramos-Rodriguez et al., 

2013). When db/db mice have been aged up to 36 weeks of age severe 

learning and memory disabilities have been detected in different cognitive 

tests, including the Morris water maze or the new object discrimiation task 

(Infante-Garcia et al., 2016).  

The Western diet, high in fat and sugar, is the lead driver to the 

development of obesity and T2D, inexorably linked to premature cognitive 

decline and AD (McLean et al., 2018). Previous research in rodents has 

shown that a HFD induces cognitive deficits after weeks or months on 

treatment. These mice present extensive cognitive alterations in different 

behavioral tests, including the Morris water maze, the Barnes maze, the 

radial arm maze, the Y-maze and several variations of the novel object 

recognition test (Cordner and Tamashiro, 2015). McLean et al. showed that 

HFD induced cognitive deficits, in complex episodic and associative 

memories occur rapidly, demonstrating that diet-induced cognitive 

dysfunction in rodents starts at early stages of the disease (McLean et al., 

2018). In other studies HFD was used to induce T2D in Sprague-Dawly rats, 

and animals showed cognitive decline that correlated with reduced neural 

density in CA1 and CA2 (Mehta and Banerjee, 2019). In line with these 

observations microvascular alterations, derived from HFD, are associated 

with a significant decrease in cognitive function, both in rats (Fu et al., 2017) 

and mice (Kothari et al., 2017). While Ramos-Rodriguez et al. showed that 

long term HFD is not enough to induce cognitive deficits in C57Bl/6J mice, 

Soares et al. have reported that adult Wistar rats drinking high-sucrose diet 

for 9 weeks display poor performance in hippocampal-dependent short- and 

long-term spatial memory tests (Soares et al., 2013).  

Since T2D is a risk factor to suffer AD, animal models have also been 

developed to analyze this relationship. Takeda et al. (Takeda et al., 2010) 
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developed a mixed T2D and AD model, by crossing ob/ob and APP23 mice, 

that shows cognitive disturbances in the Morris water maze. Similarly, by 

crossing db/db with APP/PS1 mice it is also possible to reproduce a more 

severe version of the disease and APP/PS1xdb/db mice present cognitive 

dysfunction by 14 weeks of age, as observed in the Morris water maze and 

new object discrimination tests (Infante-Garcia et al., 2016; Ramos-

Rodriguez et al., 2015), supporting once more the cross-talk between AD 

and T2D. 

 

 

4. CONCLUSION 
 

At present DM has reached the consideration of pandemia, exposing 

these patients to severe peripheral and brain complications. Neuronal loss, 

brain atrophy, vascular damage and inflammation, are just some of the 

features observed in the brain from diabetes patients and animal models. As 

a consequence, cognitive impairment is also observed, even at early stages 

of the disease, setting the conditions for increased risk to suffer dementia or 

accelerate the dementia process. Altogether, metabolic control might 

provide a relevant tool to slow down or limit associated complications in the 

CNS. 

 

 

ABBREVIATIONS 
 

AD  Alzheimer’s disease 

CNS central nervous system 

DM  diabetes mellitus 

HFD high-fat diet 

NOD non-obese diabetic 

STZ streptozotocin 

T2D type 2 diabetes mellitus 

T1D type 1 diabetes mellitus 

VaD vascular dementia 
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ABSTRACT 
 

Prenatal exposure to alcohol can create a spectrum of neurocognitive 

impairments in developing children. The presentation of FASD can vary 

considerably in severity from mild, to severe cognitive, behavioral, 

emotional and physical abnormalities. In this review chapter we will focus 

on neurocognitive deficits frequently present in children with FASD, and 

the clinical implications in relation to these deficits. The prognosis is better 

for affected children and young people who receive early diagnosis and 

appropriate support, than in those for whom support is not provided. It is, 

therefore of central importance to increase knowledge and understanding 

of this preventable neurodevelopmental disorder and how best to manage 

and support children and families affected. 

In this chapter, we will focus on reviewing the following issues: 

 

 The typical neurocognitive deficits associated with alcohol 

exposure in pregnancy; 

 The relationship between FASD and Attention-Deficit 

Hyperactivity Disorder (ADHD), and FASD and Autism 

Spectrum Disorder (ASD); 

 The combined effects of alcohol and drug abuse  

 

 

1. FASD: THE SCALE OF THE PROBLEM  
 

Fetal Alcohol Spectrum Disorder (FASD) may be regarded as one of a 

kind in the neurodevelopmental world, such that it is a disorder which is 

entirely preventable, and yet remains one of the leading causes of 

neurodevelopmental disability across the globe [1]. There appears to be a 

common misconception that due to the socially acceptable nature of alcohol 

use, it has been assumed to be relatively benign in its effects in comparison 

with more illicit substances. The reality however, as reported in the 

American Academy of Pediatrics (2013), is that of all recreational and 

medically prescribed drugs, alcohol has by far the most significant and 

teratogenic impact upon the development of the human fetus [2]. 

Alcohol consumption in women of childbearing age is common 

worldwide [3]. The Institute of Alcohol Studies in the UK, providing data 

from the 2014 Health Survey for England, indicates that 80% of women have 
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drunk alcohol in the last twelve months, compared with 87% of men. While 

alcohol use and associated harm have historically been more prevalent in 

men than in women, this gender gap appears to have closed in recent years. 

A 2016 analysis of 68 international studies, combined with a sample size of 

over four million people, found that male to female ratios of alcohol use and 

related harm have shrunk dramatically over time to a more equal picture 

across both genders. 

In 2019 SIGN 156, the National Clinical Guideline in Scotland for 

children and young people prenatally exposed to alcohol [4], reported that 

in Scotland most women of childbearing age drink alcohol regularly, 

although there has been a drop from 87% in 2003 to 82% in 2017. The 

abstinence rate among women between the ages of sixteen and thirty-four is 

reported to be 18%, falling to 13% among thirty-five to forty-four-year old. 

SIGN 156 Guideline has also estimated that approximately 3.2% of babies 

born in the UK are affected by FASD, which is roughly 3-4 times the 

prevalence of autism [4]. 

Popova et al. suggest that while the prevalence of prenatal alcohol 

exposure (PAE) is very high in many western countries, the UK has one of 

the highest rates of drinking during pregnancy, at over 40% [3]. This is 

consistent with data described within the SIGN 156 Guideline. The SIGN 

Guidelines refer to a recent study in Glasgow, analyzing the meconium of 

neonates. It was established that 42% of meconium samples showed 

evidence of prenatal exposure to alcohol, with 15% of those pregnancies 

having been exposed to very high levels. 

There is some evidence that women’s drinking behaviour prior to 

becoming pregnant may predict alcohol use during pregnancy. A study 

within the International Journal of Obstetrics and Gynaecology is suggestive 

of this pattern. Of 1969 women in the study, 82% continued to consume 

some alcohol during pregnancy [5]. It was established that women who 

drank weekly prior to becoming pregnant were 50% more likely to continue 

drinking during pregnancy, compared with those who drank less frequently. 

Where women had experienced fertility problems however, there was a 36% 

reduced likelihood of alcohol consumption during pregnancy. This would 

suggest that despite a generally poor understanding the risks involved in 
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prenatal alcohol exposure, when achieving a pregnancy has been more 

challenging, the willingness to take any level of perceived risk, including 

alcohol consumption, may be lower. A recent study [6] analyzed risk 

perception of alcohol use during pregnancy in a random sample of 426 

women in their mid-trimester of pregnancy and found that only 48.1% of the 

women were aware that any damage caused by prenatal alcohol exposure 

(PAE) is permanent. There was also a misconception that drinks such as 

wine and beer are less ‘risky’ than their stronger counterparts. Younger age 

and lower educational level predicted a lower risk perception of alcohol use 

during pregnancy, particularly regarding drinking beer.  

McQuire et al. (2019), in a population-based birth-cohort study using an 

FASD screening algorithm based upon Canadian Guidelines for diagnosis 

in one region of the UK, found that 6% of children screened positive for 

FASD in analysis using a single imputation method, 7.2% in complete case 

analysis, and 17% in the analysis with multiple imputed data [7]. A positive 

FASD screen was more likely in children of lower socio-economic status 

and for those whose pregnancies were unplanned. The results from this study 

indicate that many previous efforts at establishing prevalence, based upon 

complete case and single imputation methods, may have provided a 

considerable under-estimate of the prevalence of FASD.  

One population of children who may be at particular risk of FASD are 

children in care and those who go on to be adopted. This is supported by 

Popova et al. [3], whose systemic review and meta-analysis found that 

children in care (in addition to those in other subpopulations, such as those 

in special educational provisions and young offenders’ institutions) were at 

a 10-40 times higher risk of having FASD than children within the general 

population. A 2018 article published on the website AdoptionUK, refers to 

‘a hidden epidemic,’ quoting that ‘three quarters of looked after children are 

at risk’ of having FASD, with those children who have an established 

diagnosis being the ‘tip of the iceberg’ in terms of the true extent of the 

problem within this group of children [8].  

Nonetheless it must also be considered that the ‘middle-class wine-

drinking’ population are also at risk of unwittingly harming their unborn 

babies through inaccurate perceptions of risk with regards to their wine-
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drinking behaviour [6]. Some studies, such as Anderson et al. [5], in fact 

found that women of lower economic status may be less likely to drink 

alcohol during pregnancy compared with women of higher economic status, 

which contradicts other findings.  

Despite the high levels of PAE reported across a variety of populations, 

there has historically been an absence of high-quality prevalence studies, 

which has meant the true prevalence of FASD in the UK (and in other 

countries) has remained an unknown.  

The key message is that alcohol use during pregnancy affects women 

and babies across all socio-economic groups, which indicates a need for 

healthcare professionals within antenatal services to be explicit and 

consistent in their message about PAE to women from all walks of life. The 

figures that have been evolving in recent years demonstrate that FASD is a 

significant public health concern at a global level.  

 

 

2. FASD AS ORGANIC BRAIN DAMAGE 
 

Alcohol consumed during pregnancy enters the mother’s bloodstream 

and passes directly through the placenta and into the fetus’ bloodstream and 

amniotic fluid [9]. The enzymes that metabolize alcohol during adulthood 

are not sufficiently functional in a developing fetus, and therefore the main 

method of elimination available to the fetus is to transfer alcohol back into 

the mother’s bloodstream. However, this method is restricted by alcohol-

associated vasoconstriction, and therefore fetal elimination of alcohol only 

occurs at 3-4% of the mother’s, leading to prolonged exposure in the fetus 

[10].  

Alcohol disrupts fetal development in a number of ways, including 

inducing direct apoptotic cell death [9] and also by altering gene expression 

[11] as will be described in a later section. 

The diagnostic criteria for FASD include evidence of prenatal alcohol 

exposure, the demonstration of structural or functional central nervous 

system abnormalities, a specific pattern of three facial features (if present), 

and possibly also prenatal and/or postnatal growth impairment. The variable 
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pattern of these effects creates the spectrum of physical, neurocognitive and 

behavioural impairment which is commonly known as Fetal Alcohol 

Spectrum Disorder. It is important to note that roughly only one in ten 

affected children will present with the sentinel facial features associated with 

alcohol exposure, and therefore neurocognitive and behavioural deficits 

should be prioritised over presence or absence of facial features during 

assessment [12].  

A recent and widely used algorithm for assessing FASD has been 

created by the Scottish Intercollegiate Guidelines Network (SIGN), which 

was formed in 1993. The SIGN Guideline for assessing and diagnosing 

FASD (SIGN 156) has mirrored older Canadian Guidelines for FASD 

diagnosis by creating two key diagnostic titles under the FASD umbrella, 

namely FASD with sentinel facial features and FASD without sentinel facial 

features. Sentinel facial features, as described in the SIGN Guideline, are 

palpebral fissures measuring <5th centile, and lip and philtrum at either grade 

4 or 5 on the University of Washington Lip-Philtrum Guide [13]. Any other 

facial markers are regarded as secondary and are not relevant diagnostically. 

Facial features are only considered to be of clinical significance when FASD 

is strongly suspected but alcohol exposure is unknown. In this case, where 

there is the presence of all three sentinel facial features, diagnosis may be 

made regardless of unconfirmed history due to the specificity of all three 

features together to alcohol exposure [4]. 

The neurocognitive profile of FASD is not in itself unique or specific, 

which is likely to be why it is so commonly missed or misdiagnosed [14]. 

One of the most challenging aspects and preclusions to accurate and timely 

diagnosis is that its presentation is a great mimicker of many other 

neurodevelopmental and behavioural conditions [15]. For this reason, many 

prenatally exposed children and young people can end up collecting multiple 

diagnoses over their childhoods that each perhaps explain some aspects of 

their symptomatology, but never quite fit entirely.  

FASD must be understood as a diagnosis of exclusion, with any possible 

confounding genetic, environmental or organic factors established as a part 

of the assessment process [16]. This can create its own challenges, because 

statistically children with FASD tend to have experienced more adverse 
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childhood events than other children [17]. Therefore, their cognitive and 

behavioural difficulties can often be attributed solely to attachment related 

difficulties, which then shuts down other possible organic aetiological 

avenues for further exploration. 

Common diagnoses that children with FASD can often be suspected of 

prior to accurate diagnosis are attachment disorder, dyslexia, dyscalculia, 

unspecified learning difficulties, autism and ADHD. Many of these 

individual diagnoses may well apply, particularly in the case of autism and 

ADHD, but with the aetiological diagnosis being FASD. Sometimes other 

diagnoses may be given by health professionals and allied health 

professionals, with the hope of a child accessing support by having them, 

and in the absence of any other means of explaining the child’s difficulties. 

However, these can sometimes prove misleading if they are given without a 

broader assessment of the full neurocognitive profile in relation to the child’s 

history. For example, dyscalculia may be used to explain a child’s problems 

with mathematics, when in fact this may be due to wider working memory 

and executive functioning deficit caused by PAE. 

Autism spectrum disorder and ADHD are common comorbidities in 

children with FASD. Of those with FASD, up to 74% meet the criteria for 

ADHD and up to 68% meet the criteria for secondary autism spectrum 

disorder or social communication disorder [18]. The reason these are 

significant comorbidities is that both conditions are comprised of disorder 

in the functioning of the prefrontal cortex, which houses inhibitory control 

and self-monitoring systems. This will be discussed further.  

FASD must be understood as organic brain damage in order to 

appreciate the permanency of its neurocognitive effects and, therefore, to 

enable families and services to plan appropriately for the diagnosed child’s 

future. While much can be done to improve and enable those with FASD to 

lead rich and fulfilling lives, this will largely depend upon the successful 

adaptation of the environment and scaffolding around the individual’s 

deficits in order to keep them safe and to enable them to function optimally.  

Although prenatal alcohol exposure causes permanent brain damage, 

neuroimaging for the quantification of this is not currently indicated as a 

necessity in the diagnosis of FASD [19]. This is not only due to financial 
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constraints with regards to fund-limited public services, but also due to the 

fact that where there is quantifiable structural abnormality in relation to 

PAE, the pattern and nature of the abnormality seen is diverse, nonspecific 

and at times misleading. Therefore, further work would need to be 

completed in this area before MRI can be used successfully to at least 

augment FASD diagnosis [19]. For the majority of individuals with FASD, 

their brain structure at a macro structural level will appear normal on 

structural MRI, even if brain connectivity and white matter integrity is 

implicated. Therefore, the structural MRI most commonly offered in public 

health services would not prove informative for families, and nor would it 

affect planning for future support. 

Amongst the most consistent findings in brain imaging studies of FASD 

is of overall volume reduction [20]. Some studies also document reduction 

in frontal, temporal, parietal and to a lesser extent, occipital lobes in children 

in FASD compared with controls [19]. Frontal and parietal lobes appear to 

be most sensitive to the teratogenic effects of alcohol exposure. This is 

consistent with domains of greatest neurocognitive deficit, such as executive 

functioning impairment (whose neural substrate lies predominantly within 

the prefrontal cortex) and sensory, visual spatial and mathematical 

processing, originating primarily in the parietal lobes [21].  

In addition to the analysis of the entire cortex, more focused studies have 

identified specific structures that are differentially affected by prenatal 

alcohol exposure. Abnormalities of the corpus callosum, the major white 

matter tract connecting the two cerebral hemispheres, have been reported in 

individuals with FASD, including both volume reduction particularly in the 

most anterior and posterior sections, displacement, in a minority of cases, 

complete agenesis [22]. Abnormalities in the corpus callosum have been 

associated with several domains of neuropsychological function that are 

frequently impaired in those with FASD, such as motor function, attention, 

verbal learning and executive functioning [23,24].  

The cerebellum appears to be another structure that is particularly 

vulnerable to the teratogenic effects of prenatal alcohol exposure, again with 

decreased volume observed in studies in individuals with FASD compared 

with controls [25]. The caudate nucleus within the basal ganglia has also 
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been implicated in FASD structural abnormality and observed volume 

reduction has predicted performance in neuropsychological measures of 

inhibition and verbal learning [25]. These findings may be suggestive of 

abnormal fronto-subcortical networks in individuals with FASD which are 

consistent with observed neuropsychological and behavioural 

manifestations of executive functioning deficit [26]. The basal ganglia also 

maintain connections with motor cortices, which may also have implications 

for commonly observed fine motor skill impairment in children with FASD 

[27]. 

Diffusion Tensor Imaging (DTI) offers a detailed examination of white 

matter fibres within the brains of individuals with FASD. Diffusion offers 

information at a microstructural level by characterising white matter tissue 

organisation [21]. Some studies [24,28] have demonstrated alcohol-related 

damage to the corpus callosum at microstructural level, particularly 

abnormalities in white matter structure in posterior regions. DTI studies have 

further shown that white matter abnormality extends to wider brain regions 

in the alcohol-exposed population, such as damage to tracts with temporal 

connections involving language and visual processing [28]. A reduction in 

integrity within these tracts could underpin language and visuospatial 

impairments. Also pertinent are studies demonstrating reduced white matter 

integrity and organisation in superior frontal regions [29], which may again 

be associated with the dysexecutive presentation observed in individuals 

with FASD. Furthermore, tracts connecting the occipital lobe with inferior 

frontal and parietal lobes have been observed, which may be associated with 

deficits in visual spatial skills, attention, and visual working memory in 

those with FASD [30]. 

Functional MRI, measuring the blood oxygen level dependent signal, 

which is an indirect measure of neural activity, provides another means of 

accessing microstructural damage in those with prenatal alcohol exposure. 

Studies have found functional differences in terms of neural activation in the 

frontal lobes between those with FASD and controls in tests of working 

memory, verbal learning and an inhibition-related task [19,31]. 
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3. NEUROCOGNITIVE DEFICITS IN FASD 
 

While there is wide variation in findings regarding the level of damage 

sustained to neurocognitive functioning following prenatal alcohol exposure 

in the decades since Fetal Alcohol Syndrome was first described [32], a 

reasonably consistent picture of cognitive and behavioural deficits and 

relative strengths has emerged through the observation and psychometric 

assessment of children with PAE. A recent study [15] asserts that the reason 

FASD remains a diagnostic challenge, however, is its high rate of psychiatric 

comorbidity and also a profile that may be neurodevelopmentally and 

behaviourally indistinguishable from other neurodevelopmental disorders, 

at least without an accurate prenatal and family history. While findings from 

this study may have been limited by insufficient neuropsychological 

assessment measures, it nonetheless emphasises that the history-taking 

aspect of the diagnostic process is of vital importance in FASD. 

At a macro level one of the most common deficits seen in children with 

FASD is a reduction in general intellectual functioning. Multiple studies 

have shown consistently lower IQs in children prenatally exposed to alcohol 

compared with controls [33]. The lower IQ observed in children with FASD 

is associated with lower academic attainment, which tends to translate into 

poorer life opportunities [34]. It has been established that children with 

sentinel facial features tend to have an IQ in the borderline range (70s), 

whereas children without sentinel facial features tend to have an IQ in the 

low average range (80s) [35]. However, children with PAE can have IQs 

across the entire bell curve, from the moderate/severe learning disability 

range, up into the superior range [36,37]. There are often discrepancies 

between domains which create a ‘spiky’ profile, although the direction of 

the discrepancy is not consistent. Some children present with significantly 

poorer verbal comprehension skills compared with nonverbal ability, while 

others may present in the opposite way [38]. Those children with a high IQ 

are generally still unable to achieve and function in the manner that such a 

high IQ would suggest, due to other specific deficits associated with PAE, 

particularly impairment in executive functioning, adaptive function, and 

language. Greenspan, Brown and Edwards introduced the concept of 
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‘intellectual disability equivalence’ in 2016, to emphasise that while an 

individual with FASD may appear to have a ‘normal’ IQ, their 

neuropsychological deficits (particularly their poor executive and adaptive 

functioning) means they do not have the ability to function ‘normally’ [39]. 

The term is intended to free services from the ‘strait-jacket’ imposed by 

over-reliance on full-scale IQ scores, which have served as a barrier to 

families for being eligible to access services and support. The term also has 

important implications legally, for young people with FASD who find 

themselves in trouble with the law. 

Executive functioning is consistently described as a key impairment in 

children with FASD [40]. The term Executive Functioning defines a skillset 

whose neural substrate lies within the prefrontal cortex and may colloquially 

be described as the managing director, or the self-monitoring system, of the 

overall cortex. Clinically it can be useful to distinguish between ‘hot’ and 

‘cold’ executive functions as a means of differentiating between two core 

domains of executive functioning, both of which are generally impaired in 

those with FASD. Children with hot executive functioning deficit have 

difficulties with emotion regulation, and therefore, present with many 

externalising difficulties such as disinhibited and inappropriate behaviour 

without insight, poor social relationships, agitation and/or hyperactivity 

[41]. Cold executive functioning problems include poor working memory, 

poor sustained attention, and difficulties with planning and organisation, 

multi-tasking and sequencing behaviours [42]. 

Executive functioning can be assessed directly using tests such as the 

Behavioural Assessment of the Dysexecutive Syndrome for Children 

(BADS-C) [43], or the Delis-Kaplan Executive Function System (D-KEFS) 

[44]. Parental report measures can also be used alongside direct assessments, 

such as the Behaviour Rating Inventory of Executive Function (BRIEF) 

[45]. It is important to observe executive functioning directly in addition to 

parental reporting. Direct assessment of executive function can be 

completed from around seven years onwards. Prior to this age, it is more 

challenging to separate out generalised learning disability from a 

dysexecutive presentation. Furthermore, for children with FASD, their 

impairment in executive functioning typically becomes increasingly explicit 

Complimentary Contributor Copy



C. Jackson, M. Martinez-Cengotitabengoa, A. Peters-Corbett et al. 62 

from year one onwards in school, as the gap between themselves and their 

peers begins to diverge over time. 

A key period of difficulty for many children with FASD is the point at 

which they move to secondary school. By this time, their typically 

developing peers will have made leaps in progress with their executive 

functioning skills, being increasingly independent in their learning, their 

ability to organise themselves and their belongings, and their ability to 

manage their timetable without support. They are more socially aware and 

able to build and maintain friendships independent of their parents. Those 

with executive functioning impairment due to FASD will lag significantly 

behind with these skills, and some will never fully develop. Executive 

functioning impairment is an enduring and permanent feature rather than a 

delay that will eventually ‘catch up’ [41]. This explains why adults with 

FASD frequently struggle to manage activities of daily living fully 

independently, and are at increased risk of unlawful behaviour due to their 

continuing social vulnerability and an inability to make safe and considered 

decisions as a result of impaired executive functioning [46].  

Executive functioning drives adaptive functioning and adaptive 

behaviour [47]. Adaptive functioning refers to those skills that are necessary 

for us to navigate through the demands that are placed on us by our 

environments in a way that is effective. It includes skills such as the ability 

communicate effectively with others, and to keep oneself safe in social 

relationships. Young people and adults with FASD frequently have poor 

adaptive functioning, which makes them socially vulnerable and at risk of 

manipulation and coercion by others [48]. The presence of executive (and 

therefore adaptive) functioning impairment may be one of the most difficult 

aspects of parenting children with FASD for these reasons [49].  

Language impairments are common in children with FASD, although 

the pattern of impairment is not uniform [50]. This may be reflective of the 

wide variation in neurobiological insult created by prenatal alcohol exposure 

[51]. Language problems frequently documented are poor receptive 

language, pragmatics, grammar, semantics, speech production and 

expression [38]. There is some suggestion that, like executive and adaptive 

functioning, language deficits may become more noticeable in relation to 
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typically developing peers as a child grows into young adulthood [52]. This 

is particularly the case for semantic and pragmatic understanding. 

Deficits in spatial and verbal memory [53], visual spatial ability [54] and 

sensory processing [55] have also been observed, demonstrating the wide 

range of deficits in children with FASD. 

Social cognition is a key aspect in the presentation of children with 

FASD, which bridges both cognitive and behavioural aspects of the 

condition. Children with FASD frequently struggle with peer relationships 

as they are limited in their understanding of and ability to respond 

appropriately to social cues. They tend to be described as socially and 

emotionally immature, with the poor social judgement and decision-making 

that is consistent with very young children [56]. These difficulties with 

social cognition tend to follow a similar trajectory over time as executive 

functioning does, such that as a child becomes older, the gap between 

themselves and their peers widens and their social deficits become 

increasingly apparent [57]. The two domains are inextricably linked, which 

is demonstrated by poor performance in tests of empathy and theory of mind 

and correlates with deficits in wider executive functioning [58]. Relatedly 

children with FASD also frequently present with a variety of other 

externalising behaviours, such as confabulation [59], sleep problems [60], 

stealing [61] and also internalising behaviours such as self-harm, depression, 

or anxiety [62].  

Overall, the literature indicates that the combination of poor executive 

functioning, poor social cognition. and language difficulties represent a triad 

of impairments that result in children with FASD having limited good 

quality friendships and poor social relationships [63]. 

 

 

4. THE RELATIONSHIP BETWEEN FASD, ADHD  

AND ASD COMORBIDITIES 
 

4.1. ADHD  
 

The current literature suggests that ADHD is frequently a comorbid 

secondary diagnosis in children with FASD, being diagnosable in roughly 

Complimentary Contributor Copy



C. Jackson, M. Martinez-Cengotitabengoa, A. Peters-Corbett et al. 64 

74% of cases [2, 18]. The manner in which ADHD presents when it is 

secondary to FASD appears to have some differences to that of a primary 

ADHD presentation.  

The evidence base suggests a considerably greater deficit in executive 

functioning in groups with FASD and comorbid ADHD, compared with 

those who have a single diagnosis or with typically developing controls [64]. 

Glass et al. [65] observed that alcohol exposed groups of children perform 

significantly less accurately on executive functioning tasks, make increased 

errors, had longer response latencies, and increased variability in their 

response times. Executive functioning deficits occur in both children with 

PAE and primary ADHD clinical groups, but the degree and pattern is 

observed to differ between alcohol-exposed and non-exposed groups when 

the primary aetiological diagnosis is considered. Children with PAE showed 

greater executive functioning impairment than children with primary ADHD 

when compared on measures of planning, fluency and set shifting [66]. This 

finding may indicate that appropriate neuropsychological measures 

assessing these executive functioning domains ought to contribute to 

accurate differential diagnosis and treatment. Glass et al. (2014) also 

identified that inattention may be a more defining factor than hyperactivity 

in children with PAE compared with children with primary ADHD [66]. 

The core symptoms of ADHD are inattention, hyperactivity, and 

impulsivity. This results in difficulties such a poor sustained attention on 

tasks, poor listening skills, poor planning and organisation, distractibility, 

overactivity, excessive talking, and poor social skills including reciprocal 

play and conversation. While these symptoms are also present in children 

FASD without comorbid ADHD, those who have combined FASD and 

ADHD (that is roughly three quarters of the FASD population) will be more 

severely affected by these symptoms, which will impact upon functioning to 

a greater extent.  

Ware et al. found that adaptive functioning was poorer in children with 

FASD and comorbid ADHD, when compared with children with primary 

ADHD (and no FASD) and children with FASD with no ADHD diagnosis 

[67]. Children with FASD and ADHD scored poorer on measures of 

attention, somatic problems, and other psychiatric measures. Children with 
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ADHD caused by PAE appear to do worse in all general measures of IQ and 

executive functioning when compared to those with primary ADHD or 

typically developing peers [66]. 

Malisza et al. used fMRI to investigate spatial working memory in 

children with PAE, children with primary ADHD, and a control group of 

neurotypical children [68]. Children with PAE demonstrated increased 

activity, associated with reduced accuracy and increased response time 

variability, suggesting that the brains of children with PAE have to work 

considerably harder in order to manage a short-term memory load, compared 

with children with primary ADHD or typically developing children. The 

fMRI results demonstrated greater intra-subject variability in PAE and 

ADHD groups by region of interest. DTI studies also showed that the 

typically developing control group of children had significantly higher total 

tract volume and number of fibres compared to the PAE group. This study 

substantiates earlier discussion with regards to PAE causing loss of white 

matter connectivity and integrity, likely through apoptosis. Children with 

primary ADHD do not appear to demonstrate the same level of white matter 

neural damage. 

In summary, children with FASD meet the criteria for a secondary 

diagnosis of ADHD in roughly three quarters of cases. The presentation of 

secondary ADHD may be different to that of children with primary ADHD 

and no PAE. Children with FASD and comorbid ADHD are found to have 

poorer neurocognitive, social, behavioural trajectories than children with 

primary ADHD and neurotypical peers [69]. Their executive and adaptive 

functioning is also poorer [70]. This again highlights the importance of 

seeking accurate diagnosis and support for children with PAE. It also 

indicates that level of functional impairment may be an effective means of 

providing accurate diagnosis of FASD compared with differential 

diagnoses. 

 

 

4.2. Autism Spectrum Disorder (ASD)  
 

The comorbidity in relation to FASD and ASD is less clear, and there 

are conflicting findings within the current literature, which is perhaps 
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reflective of the current climate of ASD diagnosis more globally. It is also 

compounded by the often-young age of those being diagnosed and studied. 

It is undeniable however, that specific ASD symptoms often occur when 

PAE is present. Lange et al. (2018) estimated that ASD in children with PAE 

is 2.6% higher than the general population [71]. Studies of a specific clinical 

population – such as in [2], based upon a cohort from a national FASD clinic 

– indicate a high comorbidity of FASD and ASD, with ASD being 

diagnosable in 68% of the children meeting the criteria for FASD diagnosis. 

In 2011 Mukherjee et al. completed a similar study, finding that of 21 

children with FASD, 16 (72%) met ICD-10 criteria for childhood autism. 

McGee et al., looked at social information processing skills in children 

with PAE and demonstrated that these are frequently poor in those with PAE 

compared with unexposed controls [72]. Children with PAE also 

demonstrate poorer personal and social skills [61] in line with generally poor 

social cognition.  

There is some evidence that while diagnostic criteria may be met, a child 

with ASD where FASD is the aetiological diagnosis may present differently 

to a child with autism as their primary diagnosis. Larsson et al. (2005) found 

that children with primary ASD tended to have greater difficulties with 

initiating social interaction, sharing affect and use of nonverbal 

communication than children with PAE [73]. The social deficits in children 

with FASD are often more related to poor reading of social cues and over-

familiarity [73]. Socially inappropriate behaviours and difficulty with peer 

relationships were common in both groups. Children with FASD also 

experience deficits in sensory processing, which is a common occurrence in 

ASD and suggests that children with FASD that co-occurs with a sensory 

processing deficit may struggle to respond adaptively to their environment 

[74]. 

Mukherjee et al. (2011) found in a nested study comparing children with 

FASD and ASD that although the children in the FASD group met the 

criteria for autism, they were not “classically” autistic, with the study finding 

that they were more passive, or active but unusual, in their social functioning 

[75]. The FASD group were also more likely to be bullied and reported to 

lack common sense. Significant differences were found between the alcohol 
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exposed group and the non-alcohol exposed group, with the non-exposed 

group being less likely to show co-ordination difficulties and less likely to 

avoid social engagement with peers or participation in activities that 

involved teams. 

In summary, there is evidence that social communication disorders 

present differently to primary ASD in a similar way to the trajectory of 

primary ADHD compared with ADHD where PAE is present [75]. 

Nonetheless, if a child meets the criteria for ASD through their social 

communication and social interaction difficulties, then they would benefit 

from being understood by comorbid diagnosis.  

It is pertinent to note that the comorbidities associated with FASD and 

indeed FASD itself appears to vary across cultures. From the current 

literature, it can be speculated that there are different cultural relationships 

with alcohol and its consumption, and this is reflected in spikes of FASD 

diagnoses. Studies of subpopulations have found that groups such as the 

‘aboriginal population’ have significantly higher rates of FASD when 

compared with the general population [76], while FASD was also found to 

be extremely common in a follow up study of children adopted from Eastern 

Europe (95% also had comorbid neurodevelopmental and cognitive 

disorders, with 9% being found to have ASD [77]. It seems that the tendency 

of specific cultures and ethnicities to eschew alcohol consumption, for 

religious or other reasons, underpins global inter-cultural variations in 

FASD presentation. A global study of alcohol consumption indicates that 

the European region had the highest amount of alcohol use and also the 

highest rates of FASD, while regions such as the Eastern Mediterranean and 

South East Asia were found to have the lowest. The African region, the 

Americas, and the Western Pacific Region were relatively high for FASD 

rates, but lower than the European region, which is consistent with current 

cultural alcohol use [3]. 

 

 

5. FASD AND POLYSUBSTANCE EXPOSURE  
 

Many babies who have been prenatally exposed to alcohol have also 

been exposed to other substances. It has been found in a study of stool and 

Complimentary Contributor Copy



C. Jackson, M. Martinez-Cengotitabengoa, A. Peters-Corbett et al. 68 

hair samples of neonates who were prenatally exposed to heavy alcohol use, 

that these babies were also 3.3 times more likely to have also been exposed 

to amphetamines than those with no prenatal alcohol exposure, and twice as 

likely to have been exposed to opiates [78]. Similarly, Astley et al. 

established that, among 1400 patients with prenatal alcohol exposure 

attending the Washington FASD diagnostic clinic, 62% were also prenatally 

exposed to tobacco, 37% to cannabis, and 38% to crack cocaine [79]. 

Therefore for many children who go on to be diagnosed with FASD, their 

presentation will be complicated by poly-substance exposure.  

Mukherjee et al. in 2013, highlighted that while alcohol is the most 

teratogenic substance to the developing fetus, the teratogenic effects are 

often enhanced by the use of multiple substances, such as cocaine, tobacco, 

and cannabis [2]. It is possible to characterise in a reasonably precise fashion 

the means by which a single toxin is absorbed by the body and how it is 

distributed, metabolised and eliminated. If another substance is consumed at 

the same time, these pharmacokinetic processes may be altered in 

unpredictable ways by each of the substances ingested. In addition, the 

combination of drugs can lead to the formation of active metabolites even 

more toxic than the substances originally consumed. It is also important to 

note that when a mother is engaging in substance misuse during pregnancy 

(alcohol and/or other drugs), it is likely that she will also present within an 

inappropriate environment for raising a baby, which further increases the 

rates of perinatal morbidity and mortality [80]. 

The combined effects of several substances are considered below, with 

regards to their teratogenic properties when combined with alcohol during 

pregnancy.  

 

 

5.1. Caffeine  
 

Caffeine is the most widely consumed psychoactive substance in the 

world, including among pregnant women. During pregnancy, the half-life of 

caffeine triples and concentrates in the developing brain of the embryo [81]. 

The consumption of two or more cups of coffee per day is believed to 
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generate a significant reduction in blood flow through the placenta, which 

can trigger an increase in the production of catecholamines, potentially 

interfering with cerebral development. 

It has been observed in studies conducted using non-human subjects, 

that early exposure to high levels of caffeine affects the construction and 

activity of a newly born animal’s cortical networks. Specifically, it has been 

proven that caffeine affects the construction of GABAergic neuron networks 

in the primary visual cortex, chosen as a neocortical zonal model. This is 

due to a reduction in the number of GABAergic neurons analysed in the 

postnatal period [82], which has been found to influence the recognition of 

objects in animals [83]. Because of this it is possible that chronic and high 

exposure to caffeine during pregnancy may alter the cognitive functionality 

of adult animals. If caffeine and alcohol are consumed concurrently during 

pregnancy, the former appears to exacerbate he deleterious effects of the 

latter [81]. However, there currently exists very little information in this 

regard. There is therefore a need for more studies to be conducted which 

evaluate the impact of combined caffeine and alcohol consumption during 

pregnancy, given that this combination of substances is likely to be 

extremely common in women who consume alcohol during pregnancy.  

 

 

5.2. Tobacco 
 

Recent studies have found that tobacco has neuro-modulatory and 

neurotoxic effects on the brain of a developing fetus, including cell loss, cell 

hypertrophy and the formation of neurites, which are indicators of potential 

neuronal damage. These alterations can cause cognitive impairments in the 

fetus with respect to learning, memory and general behaviour [84].  

The changes caused by tobacco within the developing brain do not only 

occur at a cellular level but are also detectable at a macroscopic level, with 

this having been linked to lower cerebral volume, lower volume of grey 

matter and reduced cortical thickness in frontal, superior and precentral 

parietal areas [85]. It is calculated that the reduction in cerebral volume in 

children of women who smoked during pregnancy has the effect of reducing 
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IQ by up to fifteen points. However, these differences appear to reduce over 

time as the child grows and develops [86], probably due to biological 

mechanisms of compensation mediated by the neurotrophic system. 

Nonetheless a mismatch in coordination between different brain areas 

(frontal, parietal, temporal and cerebellar lobes) has been found in 

adolescents who were exposed to tobacco during their prenatal development, 

which is associated with difficulties with language and writing [87], 

indicating that some adverse effects are more enduring over time. It has also 

been proposed that early prenatal exposure to tobacco produces a lower 

response of the ventral striatum to the anticipation of reward, which makes 

these children and young people more at risk of substance abuse or addiction 

in the future [88]. It is therefore not the case that all neurocognitive 

difficulties associated with prenatal tobacco exposure vanish over time. 

Regarding the combined consumption of alcohol and tobacco, it has 

been known for some time that the use of tobacco reduces the rate of 

absorption of alcohol into the bloodstream, which may encourage the 

pregnant mother to ingest more in order to experience the same effect, [89]. 

These results have also been confirmed at a pre-clinical level [90, 91]. In a 

recent study it was found that the combined consumption of alcohol and 

tobacco during pregnancy produces negative synergistic effects on the 

duration of pregnancy (greater number of preterm births), the child's 

parameters at the time of birth (height, weight, Apgar score for the general 

condition) and birth abnormalities such as heart defects, hypoxia and 

infections. These were found to be present to a greater extent than in the 

children of mothers who consumed alcohol or tobacco independently [92]. 

This may be due to the higher levels of oxidative stress generated by both 

alcohol and tobacco, which in this case would act synergistically in 

increasing individual risk [93]. 

 

 

5.3. Cocaine 
 

Human studies show that children prenatally exposed to cocaine present 

with neurodevelopmental difficulties, even if their IQ is within the normal 
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range [94]. These deficits tend to become increasingly evident from the 

beginning of their school career, in the form of difficulties with 

concentration, impulsivity and/or aggressive behaviour. The neurobiological 

basis of these changes appears to lie in changes in cellular architecture and 

monoaminergic transmission. Follow-up studies conducted with children 

have found problems with sustaining concentration and of behavioural self-

regulation, after controlling for confounding variables [95]. This pattern of 

neuropsychological difficulties are similar to the pattern seen in alcohol-

exposed children. 

As for tobacco, it has been known for some time that the concurrent 

consumption of alcohol and cocaine during pregnancy is more harmful than 

the consumption of either drug in isolation, due to the formation of a highly 

toxic metabolite called cocaethylene [96]. This metabolite creates a greater 

feeling of euphoria and well-being compared to the individual consumption 

of cocaine, and reduces the level of sedation produced by alcohol [97]. In 

studies in vitro, it has been observed that cocaethylene is neuro-teratogenic 

to the developing brain of the fetus, with this being of greater magnitude 

than the neuro-teratogenic effects of cocaine and alcohol consumed 

separately [98].  

In a study performed with animals in comparable groups, it was 

observed that pregnant rats receiving alcohol and cocaine during pregnancy 

gave birth to offspring of lower birth weight compared to the group receiving 

alcohol or cocaine in isolation [99]. It was also noted that the former group 

had a greater number of fetal abnormalities than any of the other groups, 

although the effects on cognitive performance of exposure to both drugs in 

utero were not evaluated. 

 

 

5.4. Opiates  
 

It is estimated that one in every thousand babies has been exposed to 

opiates prenatally, which tends to be frequently accompanied by the 

consumption of other substances, including alcohol [81]. More evidence 

exists with respect to the consumption of methadone during pregnancy, with 
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the relevant studies being more controlled due to its consumption being 

legalised and protocolled. It has been observed that methadone in itself does 

not cause major malformation [100], although it has been found in 

preclinical studies to alter the cognitive performance and social capacities of 

offspring [101]. The offspring of rats exposed to opiates during pregnancy 

tended to present with cognitive alterations in the areas of memory and 

learning [102]. In humans, neurocognitive performance has been assessed 

over the first three years of the lives of children with mothers on methadone 

replacement therapy. The authors of this study found that the cognitive 

development of these children was normal throughout the 3 years of follow-

up [103]. In general, there seem to be mixed results in relation to the 

neurocognitive effects of isolated opiate exposure during pregnancy. While 

some studies find significant cognitive deficits in exposed children, other 

authors do not report such effects, or find that they disappear when 

covariates were controlled for [104]. 

At a neurobiological level, however, the evidence is more compelling. 

It is known that neurons such as astroglia and oligodendrocytes express 

opioid receptors, and, therefore, a stimulation of these receptors can 

influence the proliferation of these cells and myelination processes [105]. 

The role of myelin goes beyond the coating of axons to facilitate synaptic 

transmission, since it also regulates the extension of axons and radial growth 

of the neuron, both very important processes for the correct connection 

between neurons. Neuroimaging studies of children exposed to opiates 

prenatally, show changes in the microstructure of white matter [106] and 

reduced brain volume in certain brain areas [107, 108].  

There are currently very limited studies available comparing the effects 

of alcohol consumption by the mother on the cognitive development of a 

baby and the equivalent effects of the combined consumption of alcohol and 

opiates without the use of other substances to create confounding variables. 

It is known, however, that exposure of the fetus to alcohol increases the 

probability of their engagement in substance abuse as an adult [108] and this 

seems to be mediated by the endogenous opioid system [109].  

 

 

Complimentary Contributor Copy



The Neuropsychological Profile of Children … 73 

5.5. Cannabis 
 

Cannabis is one of the most widely used illegal psychoactive drugs in 

the world. Strangely, it is considered less harmful than other drugs, although 

there is ample evidence of its deleterious effects for the adult brain and even 

more so for the brain of the developing fetus [110]. The active substances in 

cannabis are called cannabinoids and the only cannabinoid with 

psychoactive properties is tetrahydrocannabinol (THC), which exerts its 

effects through the CB1 receptor located in the central nervous system. 

There is another type of cannabinoid receptor, CB2, but this is located in the 

immune system and the retina [111]. These receptors make up the so-called 

endocannabinoid system, and during fetal development, they are involved in 

processes of neuronal proliferation, neuronal migration and synapse 

formation. Therefore, prenatal exposure to cannabis would excessively 

stimulate these receptors by altering these processes. Cannabis use during 

pregnancy causes changes in the neurological development of the fetus, 

often resulting in hyperactivity, cognitive impairment and changes in 

dopamine receptors [112]. In two cohort studies, which conducted long-term 

follow-ups of children exposed to cannabis prenatally, authors found that by 

the age of 3, these children presented with impairments in short-term 

memory and both verbal and abstract reasoning [113, 114].  

As cannabis-exposed children grow, impairment is most apparent in 

executive functioning [115]. One of the mechanisms proposed to explain the 

influence of cannabis consumption on the brain in formation is that it 

influences the expression of genes that code for a key protein in brain 

development, such as the L1 neural adhesion molecule that has an important 

role in the processes of cell proliferation, neuronal migration and 

synaptogenesis [115]. In addition, prenatal exposure to cannabinoids 

disrupts the normal development of nigrostriatal and mesolimbic 

dopaminergic neurons. 

Few studies evaluate the effects on a child's cognition of the combined 

exposure of alcohol and cannabis in the womb. Those studies that do exist 

suggest that both substances act independently, with no apparent interaction 

between them [116]. 
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5.6. Methamphetamine 
 

In tests on animal subjects, the prenatal administration of 

methamphetamine has been observed to cause alterations in spatial learning 

and degeneration of dopaminergic nerve terminals, probably mediated by an 

increase in oxidative stress [117–119]. In follow-up studies of children 

prenatally exposed to methamphetamine, changes have been found at a 

cognitive level, which include problems with speech, language and 

mathematics, and lower overall IQ [120]. Neuroimaging studies in this 

regard find that the deficits in sustained attention and verbal memory in such 

children correlate with a lower volume in certain brain structures [121]. 

 

 

6. THE RELATIONSHIP BETWEEN FASD  

AND DEVELOPMENTAL TRAUMA 
 

Price [17], in his thesis publication on the impact of neglect on outcomes 

in FASD, has found that children with FASD are more likely to be exposed 

to adverse childhood experiences. The reasons for this are suggested below. 

Children of alcoholic and/or drug-using parents are at increased risk of 

alcohol and substance misuse themselves, in addition to other negative 

emotional and behavioural outcomes, even in the absence of PAE. This has 

been established for some time in the literature, for example in [122]. A more 

recent systematic review [123] has identified that children of alcohol 

dependent parents demonstrate negative outcomes including internalising 

and externalising behavioural problems, depression and anxiety, low 

cognitive ability and academic achievement, ADHD, poor social and 

adaptive functioning, substance misuse and suicidality. 

Alcohol and wider substance misuse make it more likely that children 

of substance misusing parents will receive neglectful and abusive care, either 

by omission or commission. Cash and Wilke found that mothers who misuse 

heroin or cocaine were twice as likely to neglect their children as mothers 

using other substances [124]. Friedman and Billick, in their literature review 

and observational study, found that the key risk factors for child neglect and 
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maltreatment included low socioeconomic status and education level, and 

even more significantly, parental alcohol and drug abuse, parental personal 

experiences of neglect, and parental stress [125]. 

The logical follow-on for many children whose parents abuse alcohol 

and other substances to a significant degree, are increased rates of removal 

into foster care and possible subsequent adoption. As has already been cited, 

the rates of FASD in children in care and adopted children are significantly 

higher than in the general population.  

It is known that infants seek and require a secure base in the form of at 

least one primary caregiver who is able to regulate their emotional 

responses, provide comfort as they become older, and be a base from which 

to explore the world around them [126]. In the presence of a consistent and 

regulating primary attachment who is able to readily adapt to their infant’s 

changing needs, a baby will continually develop, establishing new skills as 

it matures. 

Based upon Crittenden’s Dynamic Maturational Model of Attachment 

[125], if on the other hand the primary attachment figure is limited 

(cognitively or emotionally), or the demands of the context are too great, 

including for example the presence of domestic violence or substance 

misuse, the infant is left to prematurely ‘fend’ for themselves. Due to not 

being developmentally able to understand the situation they find themselves 

in, they are forced to take cognitive shortcuts in order to develop a ‘strategy’ 

to optimise their chances of survival in an aversive environment. For 

example, if a caregiver’s behaviour is difficult for an infant to predict, they 

may rely almost exclusively on displaying their feelings in ways that demand 

attention, such as excessive crying, in order to increase the chances of having 

their needs met. Alternatively if the infant has learned that showing negative 

feelings such as crying or expressing need brings about either a frightening 

response from their caregiver or being ignored, they may learn to inhibit 

demonstrating their true emotions and need for nurture, and rely almost 

exclusively on the predictable effect of displaying a false positive affect or 

even no affect at all. Infants can perfect such attachment strategies as young 

as four months old as a self-protective mechanism. When such strategies are 

required, an infant’s social and emotional developmental pathways begin to 
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diverge away from those of infants who have more balanced or secure 

attachment relationships with their primary caregivers [127]. 

More recently, neurobiological and hormonal mechanisms involved in 

attachment have been established to support the processes described above. 

Animal studies have suggested a role for endorphins, dopamine and oxytocin 

in the development of attachment [128] and this has been supported in 

human neuroimaging studies [129]. The absence of a primary caregiver or 

experience of neglectful parenting has been found to alter the production of 

and interplay of these systems, which may have long term consequences for 

social development and emotion regulation [130]. Abusive and frightening 

parenting also creates a chronic stress response in infants and children, 

resulting in increased release of cortisol and activation of the HPA axis. 

Tarullo and Gunnar suggest that prolonged activation of the HPA axis in 

childhood shapes the long-term behaviour of this system, leading to chronic 

problems for an individual concerning their stress response, ability to 

manage their emotions, social relationships and overall mental health [131].  

Until very recently, it has often been assumed that when a child has 

suffered significant neglect or developmental trauma, it would then not be 

possible to attribute causality to a child’s neurocognitive difficulties in terms 

of separating out the trauma they have suffered, and any organic effects of 

prenatal alcohol and/or other substance exposure. The English Romanian 

Adoptee (ERA) Study [132], which offered a rare opportunity to study the 

effects of extreme neglect, social and emotional deprivation in infants and 

children in varying ages, provided some interesting findings in this respect. 

One of the most significant findings was that adopted children who suffered 

severe neglect for six months or under within Romanian orphanages, 

appeared to be somewhat more resilient to neuropsychological, physical and 

emotional adverse outcomes than those whose experiences of neglectful 

caregiving continued for somewhat longer than six months. While the 

majority of children were initially developmentally delayed as would be 

expected, by six years of age when compared with adopted English controls, 

they had caught up cognitively and behaviourally [133]. Those who were 

adopted at an older age did less well and had enduring problems into 

adulthood, particularly with behavioural and social-emotional difficulties 
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[134]. Other studies of children experiencing institutionalised care have 

found similar results. Severe and prolonged early deprivation is associated 

with attachment disorder, deficits in executive functioning and memory 

[135] and general emotional and behavioural problems. Most significantly, 

the duration of institutional care is positively correlated to severity of 

cognitive and behavioural outcomes [136].  

Very few studies appear to have investigated the dual effects of both 

environmental factors and prenatal alcohol exposure [135]. In his literature 

review, Price (2019] found only six studies had considered both factors. 

However, within this small number of studies to which his own has 

contributed considerably, the emerging pattern has been that children with 

both developmental trauma and FASD were more similar to children with 

FASD in neuropsychological outcome than children with only trauma 

experiences. Children with trauma backgrounds in addition to FASD had a 

slight increase in behavioural and conduct problems, however the main 

conclusions were that the impact of developmental trauma on behavioural 

and neurocognitive outcomes in children with FASD seemed to be very 

subtle, particularly in terms of cognitive functioning. Therefore, where 

children have a history of both trauma and prenatal alcohol exposure, 

children should primarily be treated as children with FASD, with appropriate 

support and intervention for FASD, rather than a primary focus being placed 

on attachment. This finding is supported by the study conducted Mukherjee 

et al. in 2019 based upon cohort data from a national FASD clinic in the UK 

[18].  

The key message from these studies is that the neuropsychological 

outcomes in children with prenatal alcohol exposure has demonstrated that 

the presence of developmental trauma does not significantly alter 

neurocognitive outcomes and deficits for children with FASD. Therefore, 

the effects of developmental trauma and those of prenatal alcohol exposure 

may be understood as acting separately upon a child’s presentation. 

Developmental trauma does not serve as a confounding variable such that it 

makes it impossible to be specific about organic diagnoses such as FASD, 

but instead adds an additional layer over the top of the organic difficulties 

created by PAE. FASD will affect the type of therapeutic intervention that a 
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child may respond best to, again emphasising the need to treat a child with 

FASD primarily as a child with FASD in order to ensure they receive the 

appropriate support and understanding.  

 

 

7. THE ROLE OF EPIGENETICS IN FASD 
 

While the direct exposure of a fetus to alcohol is an essential 

requirement for current FASD diagnostic guidelines, an increasing body of 

literature is evolving, suggesting factors other than maternal alcohol 

consumption contribute to make a fetus more or less vulnerable to the effects 

of prenatal alcohol exposure, which are described in this section 

An area of growing interest is the potential role of fathers. The alcohol 

consumption of fathers has been found to affect unborn fetuses through both 

biological and environmental means. In a recent large-scale study [137], 

alcohol consumption in the week leading to IVF sperm collection was found 

to be predictive of both spontaneous miscarriage, and failure of the 

procedure to result in live birth. Teratogenic effects were also evidenced in 

a mouse model [138]. Researchers have also begun to investigate the 

transgenerational effect of a father’s alcohol use, for example from parent to 

child to grandchild. Studies have demonstrated that the impact of a father’s 

alcohol consumption and other substance abuse may be passed on through 

multiple generations via changes to male sperm [139]. Based on these 

studies, teratogenic effects through pre-conception alcohol consumption by 

fathers may result in changes to the male sperm such as count or quality, 

including possible fragmentation of sperm DNA in rat studies, changes to 

sperm DNA that is then inherited, or epigenetic changes to the gene regions 

that are inherited [140]. These implications may alter gene expression in 

terms of how they may be switched on or off in male sperm. Liyanage-

Zachariah and Harding (2019) suggest that the contribution of fathers to 

FASD may be explained by the concept of ‘paternal exposome’. This 

describes the process by which a father may pass toxic messages he acquires 

from the environment to his children, including the toxic impact of alcohol 

exposure.  
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Tunc-Ozcan suggests that both genetic and epigenetic risk factors 

interact to modulate both vulnerability and resilience to FASD [141]. This 

has been supported in a recent twin study by Hemingway et al. who found 

that identical PAE can result in markedly different outcomes for 

nonidentical twins, indicating that fetal genetics may significantly influence 

their vulnerability to severity of FASD outcome [142]. Dick and Foroud 

describe that certain genes have been identified in relation to susceptibility 

to FASD, which may be inherited [143]. Furthermore, paternally inherited 

genes that contribute to thyroid hormone production in the fetus have also 

been found to make a fetus more vulnerable to maternal PAE [144]. Other 

gene variants have been suggested to contribute to increased resilience of 

the fetus to maternal PAE. These genes carry the genetic messages required 

to general alcohol metabolizing enzymes which remove alcohol faster, thus 

reducing its potential harm [141]. The question is the magnitude of the 

genetic effects touched upon, and also how genetic variation interacts with 

environmental factors such as maternal/paternal nutrition [11].  

Epigenetic changes are modifications on the DNA and to the proteins 

that are bound to DNA, referred to as DNA methylation and histone 

modifications. Without changing the DNA sequence, these modifications 

determine whether a gene is switched on or off, and therefore may contribute 

to some of the symptoms and deficits in FASD. Liyanage-Zachariah and 

Harding provide an example of the Dopamine Transporter (DAT) gene 

[145]. In a study by Lee et al., DNA methylation of the DAT gene was 

decreased in fathers with heavy alcohol consumption and in their offspring, 

suggesting that the epigenetic changes caused by pre-conception paternal 

alcohol consumption may be inherited [146].  

DNA regions known as Imprinting Control Regions regulate imprinted 

genes which are switched on or off in children based on the parental origin 

of inheritance. H19 and Rasgrf1 are two examples of control regions. DNA 

methylation changes at both have been reported in the offspring of male rats 

who ingested alcohol before mating, resulting in reduced postnatal growth, 

which was more pronounced in the male offspring of male rats exposed to 

alcohol [147]. It is possible that some of the visible symptoms associated 

with FASD are caused by these changes. 
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These studies, and those like them, demonstrate that despite an emphasis 

on maternal alcohol consumption and direct PAE as the major driver for 

FASD diagnosis, the role of the father’s alcohol intake pre-conception and 

its effect on offspring, even in the absence of PAE, ought to be recognised 

even if it currently does not contribute toward diagnostic indicators. The 

main reason for their lack of contribution currently is that the mechanisms 

remain poorly understood and, therefore, are difficult to quantify [11].  

Pre-conception effects in women are more difficult to study as they are 

invariably influenced by alcohol consumption behaviour that continues into 

conception and pregnancy. They are also heavily influenced by malnutrition 

and external factors such as socioeconomic status (Haycock, 2009). 

However, controlled mouse studies of alcohol exposure for ten weeks prior 

to conception but not during pregnancy, generated genetic changes similar 

to those seen in PAE, including retarded growth [148, 149]. 

In summary, transgenerational effects of alcohol must be mediated 

through the process of gametogenesis and modulated by the maternal 

environment during pregnancy. There is compelling evidence that in 

addition to direct PAE, genetic variation and epigenetic remodelling are 

important risk factors.  

 

 

CONCLUSION 
 

FASD may be regarded as a national and international public health 

crisis. Work needs to be done to increase public understanding of the impact 

of PAE in order to reduce prevalence over time. This requires an 

unambiguous message from Governmens and health organisations about the 

dangers of drinking any amount of alcohol during pregnancy. In the 

meantime, affected children, and particularly children within high risk 

populations such as children in care and those who are adopted, need timely 

access to specialist assessment services in order to secure diagnosis, thereby 

opening the doors for appropriate support. Children with FASD have better 

outcomes the earlier they receive accurate diagnosis. Children who receive 

appropriate diagnosis at eight years old or younger present with fewer 
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behavioural difficulties and other adverse outcomes than those diagnosed at 

a later age [150, 151). While the perceived stigma of an FASD may explain 

the reluctance to diagnose in some clinicians [152), these results demonstrate 

the need to meet these misperceptions head-on with facts, for the good of 

subsequent generations. 
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ABSTRACT 
 

Epigenetic changes play an important role in the ageing process and 

have been implicated in many age-related diseases. Sirtuins, which are 

nicotinamide adenine dinucleotide (NAD)+-dependent class III histone 

deacetylases, have emerged as master regulators of metabolism and 

longevity. Among all sirtuins, Sirtuin 2 (SIRT2) is the most expressed in 

the central nervous system (CNS). It has been involved in a variety of 

biological processes including gene transcription, apoptosis, ageing, 

autophagy and inflammation. However, different groups have provided 

seemly contradictory results, thus, its specific functions remain unknown.  
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It has been described an age-dependent accumulation of SIRT2 in the 

brain. Moreover, its pharmacological inhibition shows neuroprotective 

effects in different models of Huntington, Parkinson and Alzheimer´s 

diseases suggesting its potential as a therapeutic target for age-related 

diseases. Thus, due to its possible implication in the etiology or 

development of neurodegenerative diseases, the elucidation of its functions 

in the CNS is crucial for understanding the molecular basis of these 

diseases and fundamental for the advancement of new therapeutic 

strategies.  

In this context, the aim of the present chapter is to review recent 

literature, summarize the main roles of SIRT2 in the CNS and try to 

understand the relationship between SIRT2, senescence and 

neurodegenerative diseases.  

 

Keywords: sirtuin 2, ageing, neuroinflammation, Alzheimer’s disease, 

Parkinson’s disease, Huntington’s disease, epigenetics, 

neurodegenerative diseases 

 

 

ABBREVIATIONS 
 

Aβ: Amyloid-β 

AD: Alzheimer’s disease 

APP: Amyloid precursor protein 

CNS: Central nervous system 

fAD: Familial Alzheimer’s disease 

HAT: Histone acetyltransferase 

HD: Huntington’s disease 

HDAC: Histone deacetylase 

HTT: Huntingtin 

LPS: Lipopolysaccharide 

MT: Microtubules 

NAD: Nicotinamide adenine dinucleotide 

NFT: Neurofibrillary tangles 

NO: Nitric oxide 

PD: Parkinson’s disease 

sAD: Sporadic Alzheimer’s disease 
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SAMP8: Senescence Accelerated Mouse-Prone 8 

SIRT: Sirtuin 

SIRT2-/-: SIRT2 knockout mice 

TNF-α: Tumor Necrosis Factor-α 

WT: Wild-type 

 

 

AGEING AND EPIGENETICS 
 

Ageing is a complex multifactorial biological process shared by all 

organisms. It is manifested by a gradual decline of normal physiological 

functions in a time-dependent manner increasing the susceptibility to many 

diseases, including cancer, metabolic disorders, cardiovascular disorders, 

and neurodegenerative diseases. Over the last decades, the increase in 

human life expectancy and the reduction in death rates have incremented 

exponentially the world elderly population, increasing also the prevalence 

of age-related diseases. According to data from the 2019 Revision of World 

Population Prospects, the number of older people, those aged 65 years or 

over, is expected to more than double by 2050, rising to 2.5 billion [1]. Thus, 

understanding the molecular mechanisms involved in ageing and identifying 

ways to increase lifespan are intriguing areas of biogerontology research. 

Although there are multiple hypotheses about aging and its causes are 

poorly understood, epigenetic alterations represent one crucial mechanism 

behind the deteriorated cellular functions. These alterations are linked with 

changes in gene expression which occur during aging and, thus, they are 

recognized as part of the ageing process implicated in many age-related 

diseases [2].  

The term Epigenetics is defined as “the study of changes in gene 

function that are mitotically and/or meiotically heritable and that do not 

entail a change in DNA sequence” [3] that is, the process which influences 

gene expression levels without involving changes of the primary DNA 

sequence [4]. Epigenetic modifications comprise four main processes: ATP-

dependent chromatin-remodeling complexes, non-coding RNAs, covalent 
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modifications of DNA bases (such as DNA methylation) and modifications 

of histones (for review, see [2]). 

Focusing on histone modifications, they are a variety of covalent 

posttranslational modifications that include acetylation, methylation, 

ubiquitylation, phosphorylation, sumoylation, ribosylation and citrullination 

[2, 5, 6]. Within these, the most studied modification is acetylation by 

histone acetyltransferases (HATs) which changes chromatin structure into 

an open and relaxed conformation facilitating the interaction between 

transcription factors and gene promoters, and activating gene transcription. 

On the contrary, the removal of acetyl groups by histone deacetylases 

(HDACs) induces chromatin compaction and provokes the silencing of gene 

expression. Thus, the balance between acetylated and deacetylated states 

plays a crucial role in gene expression regulation [7, 8]. In this sense, several 

studies have investigated the link between global histone acetylation and 

longevity [9]. It has been described that the longevity phenotype correlates 

with improved stress response and upregulated autophagy via increased 

histone acetylation [10]. However, there are some discrepancies in this point. 

While specific acetylation of histone 3 and 4 (H3K9 and H4K12) leads to 

the expression of genes related to synaptic growth and neural activity (for 

review, see [11]), it has been shown that deacetylation of some histones also 

contributes to lifespan extension (for review, see [12]). Thus, the 

relationship between histone acetylation and aging may depend on cellular 

status and the combination with other epigenetic modifications.  

 

 

SIRTUIN FAMILY 
 

In mammals, HDACs can be grouped into four classes based on their 

homology and phylogenetic relationship: class I (HDAC1, 2, 3 and 8); class 

II HDACs which are divided into two subclasses – IIa (HDAC4, 5, 7 and 9) 

and IIb (HDAC6 and 10); class III, also called sirtuins (SIRT1, 2, 3, 4, 5, 6 

and 7); and class IV (HDAC11). The class I, II, and IV HDACs use zinc to 

catalyze hydrolysis of the acetylated lysines, whereas sirtuins (SIRTs) rely 
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on the cofactor nicotinamide adenine dinucleotide (NAD+) for their function 

[13]. 

Sirtuins (SIRTs) constitute a class of deacetylases highly conserved 

from prokaryotes to eukaryotes. They were initially described as 

transcription-silencing HDACs in yeast. However, they have been 

associated with an increase in lifespan by a process believed to be analogous 

to caloric restriction [14]. Thus, they have emerged as master regulators of 

metabolism and longevity. 

In total, seven SIRT proteins have been identified (SIRT1-7) [15]. 

Although all of them share a similar catalytic domain of 275 amino acids, 

they differ in the N-terminal and/or C-terminal sequences flanking its core 

[16]. They can deacetylate histone and non-histone substrates such as 

transcriptional factors (Forkhead box class O or FOXO family), enzymes 

and other proteins [17]. Interestingly, some members of the family also show 

different properties, like SIRT4 and SIRT6 that are primarily mono-ADP-

ribosyl transferases [18, 19]. 

Regarding their intracellular localization, it has been described that they 

localize in all subcellular compartments including nucleus, cytosol, 

membrane and cytoskeleton [17]. While SIRT3, SIRT4 and SIRT5 are 

mitochondrial proteins, SIRT1, SIRT6 and SIRT7 are mainly nuclear 

enzymes with different sub-nuclear localization patterns: SIRT1 is largely 

associated with euchromatin within the nucleus, SIRT6 associates with 

heterochromatin and SIRT7 localizes to nucleoli [20]. In the case of SIRT2, 

it can be shuttled between nucleus and cytoplasm, depending on the phase 

of the cell cycle [12]. 

They are involved in a variety of biological processes including gene 

transcription, apoptosis, cell cycle progression, autophagy, metabolism, 

mitochondrial function, inflammation and ageing, among others (for review, 

see [12, 15, 17, 21–23]) (Table 1). Noteworthy, their presence has been 

described in the brain and, due to their multiple functions, it has been 

suggested that they could be implicated in neurodegenerative diseases [21]. 
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Table 1. Main functions of SIRTs  

 

 
Adapted from [12, 15, 17, 21–23]. 
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SIRTUIN 2 
 

Among all sirtuins, SIRT2 expression is found the strongest in the brain 

[17]. In addition, it is also expressed in a wide range of tissues and organs 

including the muscle, liver, testes, heart, kidney and adipose tissue [24–26]. 

Related to brain cells, SIRT2 is expressed in neurons [17], 

oligodendrocytes [16, 27–30] and other glial cells such as astrocytes and 

microglia [17, 31]. Within the cell, it is mainly located in the cytoplasm 

although it can also be found in the nucleus and mitochondria. Moreover, it 

is located in cell membranes and most abundant in cytoskeleton.  

Due to the growing interest that SIRT2 has aroused in recent years, a 

large number of new substrates have been identified. In the cytoplasm, 

SIRT2 is involved in cytoskeleton stabilization by targeting α-tubulin, the 

major component of microtubules (MT) [32]. In addition, due to its ability 

to migrate to the nuclei, during mitosis SIRT2 deacetylates histone 4 at 

lysine 16 and changes chromatin structure from a transcriptionally to a 

repressive active state [33]. In the same way, it controls the G2/M phase 

transition during cell cycle as metaphase check-point protein and thus, it has 

been proposed that it could protect against the development of tumors (for 

review, see [16]). 

SIRT2 is also implicated in the deacetylation of many transcription 

factors such as p53 [34], p73 [35], p300 [36], NF-κB [37], NRF2 [38], 

STAT3 [39] and Forkhead transcription factors of class O, FOXO1 [40] and 

FOXO3a [25]. Moreover, it also interacts with proteins involved in cellular 

metabolism like LDH-A [36], GKRP [41], LKB1 [42], GAPDH, ENO1 and 

ALDOA [43]. In addition to this, SIRT2 can deacetylate other substrates like 

CDK9 [44], MPK-1 [45], CNK1 [46], ATG5 [47], GLUA1 [48], MARCK3 

[49] and α-synuclein [50] (for review, see [23]). 

The wide variety of identified substrates, added to its expression in 

different cell types and its ubiquitous distribution within the cell, reflects the 

wide range of biological functions in which SIRT2 participates that include 

senescence [51], apoptosis [52], microtubule dynamics and cytoskeletal 

stabilization [24, 32, 53–55], synapsis and neurotransmission [48], 

oligodendrocyte differentiation (for review, see [56]) and myelin formation 
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[57], autophagy [47, 53, 55, 58, 59], metabolism regulation [43, 60] and 

inflammation (for review, see [61]) (Figure 1). 

 

 

Figure 1. Biological processes modulated by SIRT2. 

 

Role of SIRT2 in Ageing 
 

Several studies have proposed a central role of SIRT2 in ageing, 

however they show contradictory data. On the one hand, it has been 

demonstrated that SIRT2 shows an age-dependent accumulation at cerebral 

[24] and plasmatic level [62]. In line with these results, Anwar et al. (2016) 

[51] also reported an upregulation of SIRT2 as a specific feature associated 

with stress induced premature senescence. However, another study indicated 

that the increase in SIRT2 levels in aged rat brain is specific only to occipital 

region and no other regions [63]. On the other hand, Kireev et al. (2013) [64] 

found a decrease in SIRT2 expression in the dentate gyrus of old rats. 

Moreover, Luo et al. (2019) [65] have recently shown a reduced SIRT2 

expression and increased mitochondrial stress with age in mouse 

hematopoietic stem cells, supporting a previous study that had shown an 
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age-related decrease of SIRT2 in human peripheral blood mononuclear cells 

[66].  

Additionally, another study has demonstrated that middle-aged SIRT2 

knockout mice (SIRT2-/-) exhibited locomotor disability due to axonal 

degeneration suggesting that SIRT2 is a regulator of physiological ageing 

[67]. In line with this hypothesis, a polymorphism (rs45592833) in the 

regulatory elements of SIRT2 gene has been associated with human 

longevity suggesting the importance of analyzing also the gene expression 

regulatory mechanisms [68]. 

Noteworthy, the possible contribution of SIRT2 to the action of caloric 

restriction on metabolism and longevity has been also assessed. Caloric 

restriction is one of the most important dietary interventions that can 

improve brain health and retard ageing [69]. The notion that caloric 

restriction acts through the sirtuins is attractive and has been intensively 

investigated but has remained controversial [70]. Wang and coworkers 

described that SIRT2 expression was activated by caloric restriction and 

oxidative stress [25]. They showed that under low levels of oxidative stress, 

SIRT2 stopped cell death and promoted cellular repair through FOXO3a 

deacetylation. However, under high oxidative stress conditions, SIRT2 

could facilitate cell death to clear cells damaged beyond repair. They 

suggested that SIRT2 is linked to caloric restriction, insulin-like signaling 

pathway and oxidative stress resistance which are crucial pathways in the 

control of ageing process [25]. In the same way, North et al. (2014) [26] 

described that SIRT2 overexpression increased the expression of a key 

protein involved in ageing and longevity, BubR1. Interestingly, BubR1 

levels decrease during normal ageing, and its increase improves lifespan. 

Given that caloric restriction is associated with increases in NAD+, the 

authors suggest the possibility that SIRT2-mediated increases in BubR1 

could underlie some of the health benefits associated with this procedure 

[26]. 

In conclusion, current research on the relationship between SIRT2 and 

ageing does not provide conclusive results and additional in vivo studies are 

needed to understand the expression of SIRT2 in the different cell types and 
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its implication in ageing. In any case, despite being contradictory, these 

reports reinforce the idea of SIRT2 acting as a powerful regulator of ageing.  

 

 

Role of SIRT2 in Inflammation 
 

Ageing is also characterized by the development of a mild pro-

inflammatory state [71]. Inflammation is essential to health since it helps 

organisms to fight the invasion of microorganisms and it plays essential roles 

in repair and maintenance of organs. However, when it becomes prolonged 

it can lead to the accumulation of damage and pathology. This state of 

chronic inflammation that correlates with ageing is sometimes referred to as 

“inflammaging” and is a strong risk factor for the occurrence, progression 

and complication of many chronic diseases including obesity, 

cardiovascular disease, and neurodegenerative diseases [72]. Analogously, 

neuroinflammation is the innate immune mechanism of the CNS, where the 

microglia is the principal effector cell. In this sense, although microglia is 

essential for the support of physiological functions and cellular 

microenvironment, in the last years it has become clear that microglia 

activation contributes to the etiology of neurodegenerative and 

neuropsychiatric diseases [73]. 

Clinically, inflammaging is characterized by increased blood levels of 

several inflammatory biomarkers, including C-reactive protein, IL-6, IL-18 

and tumor necrosis factor-α (TNF-α) [74]. Interestingly, it has been shown 

that SIRT2 deacetylates the p65 subunit of NF-κβ at lysine 310, resulting in 

a reduced expression of IL-1β, IL-6, monocyte chemoattractant protein 1 

and matrix metalloproteinase 9 and 13. Accordingly, cells from SIRT2-/- 

mice show hyper-acetylation of p65 concomitantly with an increased 

expression of NF-κβ-dependent genes induced by TNF-α [37, 75]. In line 

with these results, upon inhibition or deletion of SIRT2, stimulation of the 

immune response by lipopolysaccharide (LPS) led to an overt production of 

pro-inflammatory cytokines in an experimental model of colitis and after 

traumatic brain injury [76, 77]. In addition, Pais and coworkers reported 

similar results in SIRT2-/- mice after intracortical injection of LPS [31]. 
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Interestingly, Lin et al. (2013) [75] showed that inflammatory factors (LPS, 

collagen, and TNF-α) reduced the expression of SIRT2, which may account 

for the decrease in SIRT2 anti-inflammatory functions. Moreover, Zhang et 

al. (2018) found that SIRT2 overexpression alleviated neuropathic pain and 

neuroinflammation and its inhibition aggravated these two pathologies, 

suggesting a role for SIRT2 in inhibiting the inflammatory response [78].  

However, a role of SIRT2 in promoting inflammation was also found 

upon LPS treatment in microglial BV2 cell line and macrophages where 

inhibition or silencing of SIRT2 decreased nitric oxide (NO) production and 

pro-inflammatory cytokine levels [79–81]. This was supported by an in vivo 

study using a lethal septic model [82]. Authors showed a reduction in 

cytokine levels and improved survival in those mice where the activity of 

SIRT2 was pharmacologically reduced [82]. Same results were reported in 

C57BL/6 mice treated with LPS [83]. More recently, in line with these 

conclusions, another study has demonstrated in vivo and in vitro that SIRT2 

inhibition alleviates LPS induced neuroinflammation through regulation of 

mitogen-activated protein kinase phosphatase-1 and reducing the increase of 

phosphorylated p38, JNK, and ERK [80]. Paradoxically, after experimental 

stroke, ischemic brains of wild-type (WT) and SIRT2-/- mice were 

characterized by a similar induction of neutrophils and activated 

microglia/macrophages [84]. 

Thus, to summarize, the presence of SIRT2 seems to be important for 

inflammation, however, its specific role under the different conditions and 

the underlying mechanisms still remain unclear.  

 

 

Role of SIRT2 in Neurodegenerative Diseases 
 

Neurodegenerative disorders share some features in common, including 

(i) polygenic/complex anomalies, together with cerebrovascular alterations, 

epigenetic modifications and environmental risk factors; (ii) age-related 

onset and disease progression (an increase in prevalence in parallel with 

age); (iii) progressive neuronal degeneration starting in early periods of life 

with clinical manifestations occurring decades later; (iv) accumulation of 
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abnormal proteins and conformational changes in pathogenic proteins 

(abnormal deposits of neurotoxic products); (v) no specific biomarkers for a 

predictive diagnosis and unspecific clinical phenotypes for an early 

detection; and (vi) limited options for therapeutic intervention with no 

curative treatments [85]. In this context, finding a molecular substrate 

involved in all these common pathways underlying the neurodegenerative 

disease would provide a novel pharmacological target for these pathologies. 

In this sense, SIRT2 has emerged as a potential target to treat 

neurodegenerative diseases. Firstly, although SIRT2 roles are not well 

described yet, mounting evidence indicates that excess SIRT2 might be 

deleterious to neurons [86, 87]. In agreement with this hypothesis, Maxwell 

and coworkers demonstrated that, among all sirtuins, isoform 3 of SIRT2, 

which is brain-enriched, has age-dependent accumulation in mouse brain 

and spinal cord [24]. In addition, it has been shown that SIRT2 

overexpression inhibits lysosome-mediated autophagic turnover and induces 

protein accumulation under proteasome inhibition [58], suggesting its 

involvement in protein aggregation, a common characteristic of many 

neurodegenerative diseases.  

Taking this into account, the deacetylase SIRT2 could have a crucial 

role in the etiology or development of neurodegeneratives diseases. In the 

next sections, the relationship between three main neurodegeneratives 

diseases (Parkinson, Huntington and Alzheimer’s diseases) and SIRT2 is 

discussed. 

 

Parkinson’s Disease 

Parkinson’s disease (PD) is an age-associated neurodegenerative 

disorder characterized by the loss of dopamine-producing neurons from a 

region in the brain known as the substantia nigra and by the accumulation of 

the protein α-synuclein in intracellular clumps. Regarding the involvement 

of SIRT2 in its etiology, Outeiro et al. (2007) [88] demonstrated, for the first 

time, that inhibition of SIRT2 rescued α-synuclein toxicity and modified 

inclusion morphology in a cellular model of PD. Some years later, Di 

Fruscia and coworkers also determined this neuroprotective effect of SIRT2 

Complimentary Contributor Copy



Sirtuin 2 109 

inhibition in another in vitro model, a lactacystin-induced model of 

Parkinsonian neuronal cell death in the N27 cell line [89]. 

Afterwards, another study described that SIRT2 activity was increased 

in frontal and temporal cortex in postmortem tissues of PD’s patients 

compared to control groups [90]. Interestingly, the authors showed that 

SIRT2 inhibition enhanced α-synuclein aggregate formation and 

demonstrated that its overexpression reduced the number of aggregates in 

SH-SY5Y cells, suggesting that SIRT2 increase in PD’s tissues is a 

compensatory mechanism to combat oxidative stress [90]. On the other 

hand, the same year, De Oliveira et al. (2017) [50] found that α-synuclein 

acetylation is a key regulatory mechanism for α-synuclein aggregation and 

toxicity. In this sense, genetic deletion of SIRT2 increased α-synuclein 

acetylation and reduced its aggregation and its toxicity, demonstrating the 

potential therapeutic value of SIRT2 inhibition in synucleinopathies.  

Accordingly, Esteves et al. (2018) [91] also observed that NAD+ 

metabolism was altered in sporadic PD patient-derived cells, which 

contributed to SIRT2 activation and subsequently α-tubulin deacetylation. 

SIRT2 inhibition enhanced α-tubulin acetylation and facilitated the 

trafficking and clearance of misfolded proteins. In addition, they showed 

that SIRT2-/- mice treated with MPTP had no alterations in motor behavior, 

highlighting the association between SIRT2, mitochondrial metabolism, 

autophagy and neurodegeneration in PD [91]. In line with these results, the 

injection of the microRNA miR-212-5p, which selectively inhibits SIRT2, 

into the midbrain of mice treated with MPTP prevented dopaminergic 

neuron loss and promoted autophagy showing neuroprotective effects [92].  

More recently, it has been described that α-synuclein is a microtubule 

associated protein and that its neurotoxicity is partially due to the 

deacetylation of α-tubulin by SIRT2 [53]. They demonstrate a functional 

role of α-tubulin and α-synuclein acetylation on autophagic vesicular traffic 

and cargo clearance. Thus, α-tubulin acetylation induced by SIRT2 

inhibition improved microtubules stability and increased α-

synuclein/tubulin binding reducing α-synuclein toxicity [53] indicating that 

microtubules can be also a promising therapeutic target in the field of 
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neurodegenerative disorders and that SIRT2 could play a key role in the 

process.  

Lately, human studies have been performed concluding that PD patients 

have higher SIRT2 mRNA levels in peripheral blood compared with healthy 

controls [93]. In addition, the same group has identified a novel 

polymorphism (rs2015) in the 3’UTR region of SIRT2 gene which is 

associated with PD risk in Chinese Han population [93]. 

In summary, there is a general consensus on the beneficial effects of 

SIRT2 inhibition in PD. However, more studies are needed to corroborate 

these results and to decipher the underlying mechanisms.  

 

Huntington’s Disease 

Huntington’s disease (HD) is a progressive, fatal hereditary autosomal 

dominant neurodegenerative disorder with multiple neurological 

manifestations. The genetic basis of HD is a CAG trinucleotide repeat (40 

or more times) expansion within exon 1 of the huntingtin gene (HTT). 

Prominent neuropathological features include ubiquitin positive cytoplasmic 

aggregates and intranuclear inclusions of N-terminal mutant HTT 

fragments. Reduction of the striatum volume and thinning of the cortex 

could therefore be detected by CT/MRI in genetically diagnosed individuals 

before the appearance of the symptoms [94]. Interestingly, a recent study has 

shown that mRNA levels of SIRT2 are increased in the striatum of post 

mortem HD brains [95] and its negative role in the pathology appears 

consistent. In this sense, neuroprotective effects of pharmacological and/or 

genetic inhibition of SIRT2 have been demonstrated [60, 96–98]. Luthi-

Carter et al. (2010) [60] suggested that these neuroprotective effects 

observed in cellular and invertebrate models of HD could be due to the 

transcriptional repression of cholesterol biosynthesis, in agreement with 

previous studies that showed detrimental effects of cholesterol accumulation 

in neurons. Moreover, Chopra et al. (2012) [96] corroborated Luthi-Carter’s 

study observing that SIRT2 inhibition with compound AK-7 improved the 

motor function, extended survival, reduced brain atrophy and improved the 

striatal neuronal volume of two genetic mouse models of HD. Additionally, 
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it reduced mutant HTT polyglutamine and cholesterol aggregates, 

ameliorating their neuropathological phenotype [96]. 

In addition, similar neuroprotective effects have been described in a 

SIRT2 knockdown Drosophila model challenged with HTT [97]. Besides, 

Quinti and coworkers also corroborated the neuroprotective activity of 

SIRT2 inhibition in ex vivo rat corticostriatal slice explants expressing HTT 

exon 1 with expanded CAG repeats and in Drosophila model of HD [98].  

Nevertheless, some contradictory results have also emerged. Bobrowska 

et al. (2012) [99] showed that genetic reduction or ablation of SIRT2 in a 

genetic mouse model of HD (R6/2 mice) had no effect on disease 

progression or HTT protein levels. The reason for these discrepancies is 

unclear, thus, more studies are needed to confirm the specific effects of 

SIRT2 on HD. 

 

Alzheimer’s Disease 

Alzheimer’s disease (AD) is the most common form of dementing 

illness with over 45 million people suffering worldwide [100]. It is 

predominantly a sporadic late-onset disease with exponentially increasing 

prevalence starting at the age of 65 years. AD patients suffer from memory 

impairment and cognitive decline due to AD primarily affects hippocampus, 

entorhinal cortex and neocortex which are involved in learning and memory 

[101]. In addition, aphasia, personality and behaviour changes and 

performance disorders are also typical symptoms of AD which lead to the 

decline of patients’ life quality. 

AD can be categorized into two clinical subtypes: familial (fAD) and 

sporadic AD (sAD). Although both types develop similar pathological 

phenotypes, the factors triggering the neurodegenerative process are 

completely different. In fAD, the pathological buildup is caused by the 

presence of autosomal-dominant mutations (APP, PSEN1 and PSEN2 

genes) [102]. However, sAD, which represents the majority of AD cases, is 

most commonly caused by multiple interactions regarding genetic, 

epigenetic and environmental factors, although, the principal risk factor is 

ageing (for review, see [22]). 
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Focusing on neuropathological characteristics, the principal hallmarks 

of AD are extra-neuronal senile plaques and intracellular neurofibrillary 

tangles (NFTs) [102]. The first lesion is formed by deposits of amyloid-β 

(Aβ) produced by the proteolysis of amyloid precursor proteins (APP) and 

their aggregation in plaques. On the other hand, NFTs consist of 

hyperphosphorylated and aggregated Tau protein. This Tau aggregation 

compromises cytoskeleton stability and impairs normal cellular functions 

(for review, see [103]). All of that leads to cell death and the recruitment of 

others cell types, such as microglia and astrocytes, leading to an 

inflammatory reaction which in turn leads to energy failure and synaptic 

dysfunction [104]. In fact, this inflammatory process has been also related 

with the onset and progression of AD where immune system activation 

contributes to AD pathogenesis (for review, see [73, 105]). 

Epigenetic mechanisms regulate essential cellular functions and they are 

also associated with cognition, where changes in the epigenome can modify 

cognitive functions such as learning or memory [106, 107]. Among all 

epigenetic modifications, histone acetylation is crucial in memory 

acquisition and maintenance [108]. It has been demonstrated that the balance 

between HAT and HDAC is altered in ageing and deficits in age-related 

memory acquisition are due to a decrease in the transcription of genes 

involved in learning by an enhancement in HDAC activity [109]. 

Importantly, reduced histone acetylation correlates with age in the frontal 

cortex of the human brain, notably at the promoter regions of several genes 

involved in neurotransmission [110]. Moreover, using inhibitors of HDAC 

activity, histone acetylation, synaptic plasticity, learning and memory have 

been enhanced proving that these ageing-related epigenetic modifications 

are involved in cognitive deficits associated to age and AD [111–115]. 

Focusing on SIRT2, it has been described that this deacetylase could be 

implicated on the etiology of AD. A recent study has shown that SIRT2 

protein levels are increased in temporal cortex of AD post-mortem samples 

[55]. In addition, Singh and coworkers have described that SIRT2 activity is 

also increased in frontal and temporal cortex in postmortem tissues of AD’s 

patients compared to control groups [90]. However, Wongchitrat et al. 

(2018) [62] have recently found that mRNA SIRT2 levels in plasma were 
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significantly higher in AD and healthy ageing patients compared to healthy 

young controls suggesting that it is not a biomarker of the disease but of the 

ageing process [62]. 

Moreover, a meta-analysis performed in 2013 revealed that there was an 

association between a polymorphism (rs10410544, C/T) in SIRT2 gene and 

AD susceptibility in humans [116–118]. In this line, Cacabelos et al. (2019) 

[85] have recently shown an association between this rs10410544 C/T 

polymorphism of SIRT2 and AD susceptibility in the APOEε4-negative 

population. Interestingly, SIRT2 variants influence the biochemical, 

hematological, metabolic, and cardiovascular phenotypes of AD and they 

can also affect the response to treatment. The authors have observed that 

SIRT2-C/T carriers are the best responders, SIRT2-T/T carriers show an 

intermediate pattern, and SIRT2-C/C carriers are the worst responders to a 

multifactorial treatment [85]. In addition, another recent study has compared 

blood samples from control and AD patients and has identified two different 

polymorphisms in 3’UTR region of SIRT2 gene (rs2015 and rs2241703) 

which are associated with AD risk [119]. 

Regarding to SIRT2 inhibitory studies, the first research providing a 

proof-of-concept for therapeutic benefits of SIRT2 inhibitors in both Tau-

associated frontotemporal dementia and AD came in 2012 [120]. The 

authors tested AK-1 SIRT2 inhibitor which was administered directly into 

the hippocampus of Tau transgenic rTg4510 mice and they confirmed that 

SIRT2 inhibition protected to neurodegeneration without affecting 

neurofibrillary tangles pathology [120]. Afterwards, Scuderi et al. (2014) 

[121] evaluated if the compound AGK-2, a SIRT2-selective inhibitor, could 

prevent reactive gliosis, an important hallmark of AD. They showed that 

AGK-2 reduced astrocyte activation as well as pro-inflammatory mediators’ 

production in primary rat astrocytes exposed to Aβ 1-42 peptide. 

Besides, Biella and coworkers tested another SIRT2 inhibitor, AK-7, 

which improved cognitive performance in two AD transgenic mouse 

models, 3xTg-AD and APP23, through the modulation of APP 

amyloidogenic processing and Tau stability [122]. Preliminary, in vitro  
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results showed that SIRT2 inhibition reduced Aβ production. Afterwards, in 

vivo data showed an improvement of cognitive performance in the novel 

object recognition test and an effect on APP proteolytic processing. 

Additionally, AK-7 increased acetylation of α-tubulin, which may have 

promoted microtubule stability and raised the steady-state levels of Tau, 

increasing total Tau protein levels in 3xTgAD mice [122]. 

In order to further understand the role of SIRT2 on microtubule stability, 

Silva et al. (2017) [55] have demonstrated that over-activation of SIRT2 

results in tubulin deacetylation, Tau phosphorylation and microtubule 

destabilization which leads to a dysfunction in autophagy, accumulation of 

Aβ oligomers and neuritic dystrophy. Accordingly, SIRT2 inhibition or 

knock-out improved autophagy and decreased typical AD cytoskeletal 

pathology [55]. These results have been recently confirmed by Esteves et al. 

(2019) [53]. They have demonstrated that SIRT2 inhibition induced α-

tubulin acetylation, a decrease in Tau phosphorylation and an increased in 

Tau/tubulin binding associated with microtubules dynamic improvement 

[53]. 

Finally, a more recent study has demonstrated that the administration of 

the compound 33i, a SIRT2-selective inhibitor, prevents cognitive decline 

in the senescence accelerated mouse model (SAMP8), which is considered 

an accurate model of sAD [123]. In this study, 7-month-old SAMP8 mice 

treated with 33i compound have shown marked improvement in learning and 

memory in Morris Water Maze test as well as an increase of protein subunits 

of NMDA and AMPA receptors and a decrease in anti-inflammatory 

modulators [123]. 

Overall, these findings establish a link between SIRT2 and principal AD 

neuropathological hallmarks (Table 2). In this sense, although more studies 

are needed, the positive effects observed after SIRT2 inhibition on neuronal 

homeostasis makes SIRT2 inhibition a desirable candidate for the treatment 

of age-related neurodegenerative diseases. 
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Table 2. Beneficial effects of SIRT2 inhibition in Alzheimer’s disease 

 

 
 

 

SIRT2 Inhibitors 
 

Currently, several selective SIRT2 inhibitors have been identified and 

12 of them have come into preclinical studies [124]. Their principal targets 

are cancer and neurodegenerative diseases.  

Within all these, AK-1, AK-7 and AGK-2 have extensively been used 

in cellular and animal models of neurodegenerative diseases including PD, 

HD and AD, as it has been explained in this chapter. Despite their promising 

therapeutic results, none have been approved. In this sense, their low 

selectivity for SIRT2 has been reported to be one of their main limitations. 

Even though AK-1 (IC50 = 12.5 µM) is more potent that AK-7 (IC50 = 

16 µM), it lacks of blood-brain barrier permeability, a crucial characteristic 

for the treatment of neurodegenerative diseases [124]. Furthermore, AGK-2 

was until the date the most potent selective SIRT2 inhibitor (IC50 = 3.5 µM) 

[125]. In this regard, the compound 33i, a 2-anilinobenzamide derivative, 

exhibited potent and selective SIRT2 inhibition in enzyme assays compared 

to previous reported SIRT2 inhibitors. 33i showed more than 3.5-fold 
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greater SIRT2-inhibitory activity and more than 10-fold greater SIRT2-

selectivity over SIRT1 and SIRT3 compared to AGK2 with an IC50 of 0.57 

µM [125]. However, Sakai et al. (2015) [126] designed in 2015 a new 

compound called 17k which showed similar SIRT2-inhibitory activity than 

33i (IC50 = 0.60 µM). Nevertheless, although 17k showed more than 150-

fold selectivity over SIRT1 and SIRT3 isoforms, 33i did not inhibit either 

SIRT1 or SIRT3 at concentrations up to 300 µM showing high selectivity 

for SIRT2 [125]. In addition, 33i has lower molecular weight than 17k 

allowing better transport across the membranes (350.39g/mol compared to 

403g/mol, respectively) (Table 3). 

 

Table 3. Comparison table of the main SIRT2 inhibitors used in basic 

research of neurodegenerative diseases 
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More recently, a new SIRT2 inhibitor, called γ-mangostin, has been 

identified, which has been extracted from the tropical plant Garcinia 

mangostana. Although, it induces neurite outgrowth, it is less potent than 

33i with an IC50 of 3.8 µM, being similar to AGK-2 [127]. 

 

 

DISCUSSION AND CONCLUSION 
 

In the present chapter we have outlined how SIRT2 plays a role in ageing 

and inflammation and may act as modifier of PD, HD and AD pathology. 

On the whole, SIRT2 activity seems to have a detrimental effect in diseased 

conditions, which may have strong therapeutic value. 

However, the effects of SIRT2 on different biological processes are 

intriguing and different studies have shown that both absence and 

overexpression are detrimental. For example, it has been demonstrated that 

a good control of SIRT2 dosage is a critical factor for successful myelin 

formation in the peripheral nervous system [57] and for oligodendroglial 

precursor differentiation [128]. Moreover it is important to note that SIRT2-

/- mice show defective synaptic plasticity, impaired learning and memory, 

microglial activation, locomotor dysfunction, iron deficiency, mitochondrial 

modifications, tumor formation and cardiac hypertrophic among other 

diseases (for review, see [23]) suggesting that SIRT2 gene deletion affects 

several important physiological functions in vivo.  

Remarkably, the conclusions reached by SIRT2 gene deletion do not 

always agree with those of the studies that have used pharmacological 

inhibitors. This is not surprising as, in addition to the developmental effects 

of SIRT2, it may be also related to the induction of compensatory 

mechanisms, the specificity or dosage of the SIRT2 inhibitor used, or even 

different phenotypes of the same diseases. Moreover, SIRT2 seems to play 

different roles in different cell types and during different stages of 

development and ageing.  

In conclusion, the connection between SIRT2, ageing and neurological 

disorders is well established, and thus, the potential of SIRT2 as a 

therapeutic target deserves to be studied in greater depth. In this sense, more 
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complete in vivo studies and the development of accurate disease models 

and inhibitors are needed to understand the role of SIRT2 under different 

conditions and to decipher the underlying mechanisms. This step will be 

essential for optimizing translational efforts while minimizing the risk for 

detrimental effects. 
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ABSTRACT 
 

Biological motion perception is the unique ability to perceive 

movement of the human body. This perception requires attention to global 

configurations and is an essential ability in relation to theory of mind and 

social cognition. Weak central coherence of global-ignoring and local-

focusing styles in visuospatial perception is characteristic of 

neurodevelopmental disorders. This weakness causes deficits in face 

processing and biological motion perception, which in turn influences 

development of the theory of mind, or emotional intelligence. Emotion is 
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an essential component of social cognition. This chapter examines the 

relationship between biological motion, emotions, and theory of mind in 

people with neurodevelopmental disorders. Specifically, this chapter uses 

bottom-up and top-down investigations to systematically uncover 

behavioral and neurological patterns of biological motion perception (with 

and without emotions) in people with Williams syndrome, autism spectrum 

disorder, and Down syndrome. The results show that neurodevelopmental 

disorders cause changes to distinct genotypes in the early stage of life, and 

these changes have devastating effects on later development of phenotypes. 

 

Keywords: biological motion, emotion, theory of mind, social cognition, 

Williams syndrome, autism spectrum disorder, Down syndrome 

 

 

INTRODUCTION 
 

Contextual integration is an essential technique for acquiring 

meaningful information in humans. It is an important component of social 

abilities, such as face processing, sensation of emotions, and perception of 

biological motion. Previous studies have shown that social abilities start to 

develop in infancy (Grossman and Johnson 2007). Certain neural indexes 

indicate early development of social awareness, such as the N290 shift in the 

brainwaves of infants and the N170 component in adult face processing. A 

fundamental factor of this social awareness is the ability to sense global 

information. Healthy adults perceive global information automatically in 

verbal (e.g., language) and nonverbal (e.g., facial recognition) domains. 

In the verbal domain, adults integrate propositions (meaningful 

segments in sentences) with discretely embedded propositions in sentences 

(Bransford and Franks 1971, 1972; Bransford, Barclay, and Franks 1972; 

Franks and Bransford 1972, 1974a, 1974b). Healthy adults interpret novel 

information by integrating the new information with the old. This mixing of 

old and new can lead to false positives, however, wherein individuals believe 

that they have seen information before when in fact they have not. The high 

rate of such false positives suggests gist-oriented contextual integration. 

In the nonverbal domain, contextual integration is essential for 

achieving meaningful coherence. Impaired coherence may weaken the 
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ability to perceive global information and thus limit focus to local elements 

only. For example, weak coherence is a major characteristic of social 

atypicality in people with Williams syndrome (WS), a rare disorder 

involving missing genes on chromosome 7q11.23 (Hsu and Tzeng 2011; 

Hsu 2013a, 2013b, 2013c, 2014a, 2014b; Hsu and Chen 2014c), and in 

people with autism spectrum disorder (ASD), which affects communication 

and social behaviors (Frith 1989; Happé 1995; Happé and Frith 2006). 

Interestingly, these two clinical populations display distinct patterns of 

social ability: people with WS tend to be hyper-social, and people with ASD 

tend to be social-avoidant. In contrast, people with Down syndrome (DS), 

which is a condition involving an extra copy of chromosome 21, are better 

at global perception but still have difficulties in interpersonal interaction. 

Biological motion perception is a kind of social and visuospatial 

information processing of human movement. Social cognition includes the 

perception of biological motion paired with emotions. This perception is 

atypically developed in people with neurodevelopmental disorders. In 

people with WS, for example, it is characterized by a local-focused but 

global-ignoring processing style (Korenberg et al. 2000; Mervis and John 

2010; Semel and Rosner 2003), which has been documented in verbal and 

non-verbal domains. People with ASD also display this perceptual 

processing style (Sha and Frith 1983, 1993). In contrast, people with DS pay 

more attention to global than local information in both verbal and nonverbal 

domains (Hsu 2019a; Karmiloff-Smith et al. 2016). However, this seemingly 

better perception of global information still shows atypical processing of 

socially related information. 

Face processing is related to biological motion perception and has 

specific visuospatial cognitive processing styles and patterns. People with 

WS tend to focus intently on human faces (Bellugi et al. 2000), but people 

with ASD have difficulty making eye contact with people (Happé and Frith 

2006). Although children with DS often have unintelligible verbal 

production, they are relatively sociable and able to approach people starting 

at around two years old (Fidler, Hepburn, and Rogers 2006). Impairment of 

face processing is related to biological motion perception in other 

visuospatial disorders, such as people with prosopagnosia (Lange et al. 
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2009; Pavlova 2012). These atypical sensitivities to faces may originate 

from a weak perception of biological motion among people with 

neurodevelopmental disorders. A weak perception of biological motion thus 

may help predict social cognition ability (Pavlova et al. 2018). 

Neurodevelopmental disorders display distinct patterns of sociability: 

people with WS are hyper-social, people with ASD are social-avoidant, and 

people with DS are socially friendly. These distinct sociability traits yield 

different emotional processing styles, leading to atypical theory of mind and 

social cognition. Thus, atypical visuospatial perception may cause deficits 

in biological motion perception (with and without emotions), resulting in 

distinct theory of mind outcomes and atypical social development in people 

with neurodevelopmental disorders. 

This chapter focuses on biological motion processing by examining 

social abilities in people with WS, ASD, and DS at the behavioral and 

neurological levels. It also explores further linkages between emotions 

embedded in biological motion and the theory of mind in people with these 

disabilities. Future possible research directions in the field of 

neurodevelopmental disorders also are suggested. Unlike traditional testing 

that uses false beliefs to probe the social-cognitive aspect of the theory of 

mind, this chapter contributes to the understanding of this theory using a 

social-perceptual domain to systematically survey this ability in people with 

neurodevelopmental disorders using component analyses of the theory of 

mind (Tager-Flusberg and Sullivan 2000). 

 

 

BIOLOGICAL MOTION 
 

The perception of biological motion relies on configural, not local, 

information that conveys visuospatial awareness and social information 

about human movement. Physical movement contains signals about a 

person’s intentions, desires, and beliefs, which are important cues in social 

interactions. The processing of biological motion with or without emotion 

involves distinct neural networks. In a study using positron emission 

tomography to assess perception of meaningful hand movements (e.g., 
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reaching for and opening a bottle) and meaningless hand movements 

(Grèzes, Costers, and Decety 1998), the meaningful movements activated 

the left inferior frontal gyrus, left fusiform gyrus, and right inferior temporal 

gyrus, and the meaningless movements activated the bilateral inferior 

parietal lobe, right superior parietal lobe, and right cerebellum. These 

findings suggest that specific brain areas are involved in visuospatial 

perceptions of human body movements. 

Sensitivity to biological motion starts early in life. Infants show 

lateralized N290 activation in response to biological motion, compared with 

bilateral activation in response to faces, suggesting a distinct adult-like 

pattern in recognizing human movement (Grossman and Johnson 2007). 

These findings further suggest that humans have unique visuospatial 

perceptions of human body movement. 

Hadad, Maurer, and Lewis (2011) compared developmental trajectories 

in detection of biological motion and global motion in children aged 6–14 

years and in adults. In the global motion task, participants observed two dots, 

one moving at a slow speed and one moving at a fast speed, and were asked 

to determine whether the dots moved upward or downward by responding 

verbally or pointing by hand. The results revealed that sensitivity to global 

motion was a function of age for both faster- and slower-moving dots. 

Higher sensitivity was observed at the faster rate (main effect of speed), and 

adults had a lower threshold than children for detecting global motion. To 

assess biological motion perception, participants completed two tasks (a yes-

no judgment and a forced-choice judgment). In the yes-no task, participants 

watched a biological motion image and responded yes if there was a person 

in the image and no if no person was observed. In the forced-choice 

judgment, participants watched a sequence of noise-dot images and reported 

the order (first or second) in which biological motion images with a person 

appeared. The results of the yes-no judgment for biological motion detection 

showed children aged 6–8 years showed significantly different sensitivity in 

detection, compared with the adults, whereas children aged 9–14 years 

showed similar sensitivity to adults. The forced-choice task also revealed an 

age effect. Adults correctly identified more noise-dot images with human 

figures, compared with children aged 6–11 years, and children aged 12–14 
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performed similarly to adults. These results indicate that biological motion 

detection develops over time. 

People with WS have delayed sensitivity to noise-dot representations of 

biological movement. In a study by Jordan et al. (2002), people with WS and 

neurotypical controls consisting of mental-age- and chronological-age-

matched adults were assessed for their ability to identify walking figures in 

point-light images containing low and high signal-to-noise ratios. Three 

noise types (static, random, and yoked) were used. For static noise, the point-

light images of figures walking left or right were fixed. For random noise, 

the point-light images were presented with noise signals at the same velocity 

but in random trajectories. For yoked noise, the point-light images were 

paired with all noise signals moving at the same trajectory, except for one 

that moved at a different velocity. Trials with low signal-to-noise combined 

the same number of noise lights as the point-light figure and trials with high 

signal-to-noise used three times more noise lights than those for the figure. 

In the low signal-to-noise trial, people with WS identified the moving 

figure most accurately during static noise (no difference was observed for 

random and yoked noises). They also performed similarly to the 

chronological-age-matched controls across all conditions, whereas mental-

age-matched participants had the lowest percentage of correct responses. In 

the high signal-to-noise trial, people with WS showed marginally 

significantly worse, compared with the chronological-age-matched controls, 

and performed no differently than the mental-age-matched controls in their 

responses for random and yoked noises. These findings suggest that 

individuals with WS are sensitive to contextual information portraying 

biological movement. 

People with ASD demonstrate atypical sensitivity to biological 

movement. For example, they look longer at scrambled, spinning-top, object 

motion but not at biological motion (Annaz et al. 2012). Blake et al. (2003) 

reported that people with ASD often inaccurately identify human actions due 

to difficulties in perceiving social information. They showed people with 

autism pictures of biological motion and pictures of globally incoherent 

configurations and asked participants to verbally identify them. The results 

revealed that people with ASD were in the normal range for detecting 
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incoherent configurations but below average at recognizing biological 

motion, perhaps due to atypical processing in the superior temporal sulcus 

leading to impaired social skills. 

Riddell et al. (2017) examined deficits in biological motion detection in 

people with DS by asking them to identify human figures in images of point-

lights linked by purple lines. They found impairments in global perception 

of biological motion but not of local motion, suggesting that people with DS 

have deficient biological perception. Virji-Babul et al. (2006) reported 

similar deficits in people with DS, who were less able than healthy controls 

to discern human movement from object movement. Pavlova et al. (2018) 

compared the ability to recognize actual faces and facial shapes composed 

of fruits and vegetables in people with DS and revealed significantly lower 

sensitivity to actual faces in people with DS, compared with healthy 

controls. This finding confirms a relationship between impaired face 

processing and recognition of biological motion in people with DS, as 

previously identified in people affected by prosopagnosia (Lange et al. 2009; 

Pavlova 2012). 

 

 

BIOLOGICAL MOTION WITH EMOTION 
 

Emotion is a response to environmental stimuli. Emotions are essential 

to survival, such as the fear response, and they help regulate behavioral, 

social, and internal functions. Emotion also is important for social, 

cognitive, personality, and motor development (Barrett 1998). Concepts, 

lexical labels, and emotions are processed via several perception modalities. 

Biological motion is a type of visuospatial perception embedded with social 

information that requires local and global information processing. This 

processing can vary in people with neurodevelopmental disorders. For 

example, people with WS and people with ASD both tend to focus on local 

elements and ignore global configurations, but these disorders affect 

sensitivities to social information differently (Bernardino et al. 2002; Bihrle 

et al. 1989). People with WS are hyper-social, and people with ASD are 

social-avoidant, which can manifest in differences in awareness of emotions. 
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Thus, it is important to understand the unique effects of these disorders on 

perceptions of biological motion with and without emotion. 

Processing of biological motion with emotion is contextual and 

influenced by several factors. Clarke et al. (2005) investigated emotion 

recognition by having participants view clips of professional actors 

expressing anger, fear, disgust, sadness, joy, or love. The actors had point-

lights attached to their body, and the point-light images were displayed in 

either upright or inverted orientations. Participants were asked to rate the 

strength of the actor’s emotion from 0 to 100, using a slider on the screen. 

They identified upright portrayals of target emotions with over 70 percent 

accuracy and portrayals of non-target emotions with 19 percent accuracy. 

They rated all target emotions higher than any non-target emotions (except 

for disgust, which seemed to be confusing to participants). No difference 

was observed in participants’ recognition of upright sadness, anger, and fear. 

Strength ratings were weaker for inverted orientations of sadness, anger, fear, 

and disgust (joy and love were not affected). They further found that the 

number of actors displaying the emotions affected participants’ detection of 

biological motion. Recognition of joy and love was low when acted out by 

only one actor; on the contrary, recognition of sadness and fear was high 

when acted out by only one actor. Recognition was lowest for inverted 

orientations of fear, sadness, and love when acted out by only one actor. 

Anger was not influenced by the number of actors. Overall, the findings 

suggest that emotion is context-sensitive and represented distinctly in human 

cognition. It remains unclear whether certain neurodevelopmental disorders, 

such as WS, alter context perceptions when processing biological motion 

with emotions. So far, no study has investigated this issue. 

In ASD, typicality in autistic traits has been shown to influence the 

accuracy of emotion recognition in biological motion. Actis-Grosso, Bossi, 

and Ricciardelli (2015) examined sensitivities to emotions in people with 

low autistic traits and high autistic traits by presenting static faces and 

dynamic biological motion embedded with emotions. The results revealed 

that people with low autistic traits were least accurate in recognizing fear on 

faces and that people with high autistic traits showed no difference in 

recognition of any facial expression. The low autistic traits group was least 
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sensitive to sadness in biological motion, and the high autistic traits group 

was least sensitive to fear in biological motion. These findings suggest 

distinct sensitivities in emotion perceptions among people with different 

levels of autistic traits. 

Hubert et al. (2007) examined whether people with ASD could 

differentiate among simple human actions (e.g., lifting, hopping), subjective 

feelings (e.g., itchy, tired), emotional states (e.g., surprised, angry), and 

motions involved with objects (e.g., dustpan and brush sweeping). 

Participants viewed clips and were asked to verbally describe them. 

Compared with healthy controls, participants in the autistic group showed 

no difference in their ability to detect simple human actions and motions 

involving objects; however, the autistic participants were worse at 

describing emotional states and subjective feelings. The findings indicate 

that people with ASD have deficits in detecting biological motion with 

emotion. 

In Virji-Babul et al. (2006), people with DS viewed point-light images 

of biological motion (i.e., walking) coupled with emotions of happiness, 

sadness, madness, and anger. Participants were asked to describe or point to 

the cartoon face depicting the emotion in each image. The responses were 

no better than chance when identifying sadness and similar to the healthy 

control group when recognizing the other three emotions. The findings 

suggest that people with DS are deficient in perceiving biological motion 

with emotion. 

 

 

THEORY OF MIND 
 

Emotion is an important part of theory of mind, a term coined to describe 

the ability to make inferences about, or “mentalize,” others’ mental states. 

This mentalizing ability was first observed in chimpanzees (Premack and 

Woodruff 1978) and later in humans (Wimmer and Perner 1983). 

Mentalizing includes inferences about others’ beliefs, desires, intentions, 

imagination, and emotions (Blake et al. 2003). Mental representations form 

based on these inference conditions and the consequences of changes in 
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those inferences. When the representations do not match, it can lead to the 

development of false beliefs. The two standard protocols for measuring false 

beliefs include the location-changing (i.e., Sally–Anne story) and content-

changing (i.e., Smarties) tests. In the location-changing test (Baron-Cohen 

et al., 1985), participants observe two puppet protagonists, Sally and Anne, 

who are playing with marbles in a room. After a while, Sally puts her 

marbles in a basket and leaves the room. Anne then removes the marbles 

from the basket and puts them in a box instead. Participants are asked where 

they think Sally will look for her marbles when she returns to the room. 

Children who predict that Sally will look in the basket demonstrate an 

understanding of Sally’s false belief (or mental states), whereas children 

who predict that Sally will look in the box demonstrate that they cannot 

predict someone else’s false belief. This ability to recognize others’ false 

beliefs typically starts to develop in infancy and becomes firmly established 

by 4 years old (Frith 1989; Happé 1995).  

Theory of mind, also known as social intelligence or social knowledge, 

involves integrating social information with reason, understanding 

intentions, and inferring desires and beliefs. This processing is an essential 

part of social development (Brothers 1990). Tager-Flusberg and Sullivan 

(2000) proposed a componential view of theory of mind, which includes 

social-perceptual and social-cognitive components based on how the 

component relates to other cognitive abilities, such as language, 

development time, neurobiological substrates of each component, and 

selective impairment in special populations. The social-perceptual 

component is closely related to the affective system, which includes 

emotions. Emotions can be recognized in faces and voices, inferred from 

body movements, and used to differentiate between humans and objects.  

Emotion recognition begins in infancy. For example, newborns are face-

oriented and reflectively imitate facial expressions (Atkinson, Tunstall, and 

Dittrich 2007). They also use eye gazes to make inferences. The 

neurobiological substrates of the social-perceptual theory of mind include 

the amygdala, medial temporal cortex, and superior temporal gyrus. The 

social-cognitive component relates to language and concept expression, 

such as false beliefs. The brain areas related to activation of the social-
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cognitive theory of mind are the prefrontal, orbitofrontal, and medial-frontal 

cortexes; left medial temporal gyrus; and left temporal lobe. People with 

ASD are impaired in both social-perceptual and social-cognitive 

components of theory of mind. In contrast, people with Asperger syndrome 

are deficient in the social-perceptual component but not the social-cognitive 

component, as they usually have better language abilities than those with 

ASD. 

Unlike traditional investigations into the theory of mind, which examine 

false beliefs, this chapter investigates the social-perceptual theory of mind 

in terms of biological motion (with and without emotion) and social-

cognitive ability and comparing theory of mind in those with typical and 

those with atypical neurological development. Such comparison reveals the 

distinct social-perceptual theory of mind for processing biological motion 

with and without emotion in atypical neurological development.  

In studies of brain and behavioral asymmetry in people with WS (Hsu 

et al. 2007; Hsu and Chen 2014c), people with WS are less able to recognize 

emotions in the eyes, suggesting weaker awareness of others’ mental states 

(Tager-Flusberg, Boshart, and Baron-Cohen 1998). In Tager-Flusberg et 

al.’s (1998) study, young children with WS show deficiency in recognizing 

emotions on faces: they can identify fear most often, followed by happiness, 

anger, and then sadness. However, no similar correlations were found in the 

false belief tests when comparing cohorts based on age, intelligence, or 

verbal ability. Adults with WS show low accuracy in recognizing emotions 

in people’s eyes (Baron-Cohen et al. 1997; Baron-Cohen 2000). Rose et al. 

(2007) found that compared with healthy controls, people with WS 

demonstrate similar abilities to recognize happiness, sadness, anger, 

surprise, fear, and neutrality on upright faces but less accuracy when 

identifying inverted neutral faces. Moreover, participants with ASD 

performed significantly worse than those with WS and healthy controls 

when asked to identify emotions on upright faces. 

Happé et al. (1996) conducted a theory-of-mind study using positron 

emission tomography and found reverse activation of brain areas in 

participants with Asperger syndrome when presented with mentalizing 

stories (theory of mind), non-mentalizing stories (physical stories), and 
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unstructured sentences. While processing theory-of-mind stories, the left 

medial prefrontal cortex (Brodmann area 8/9) was not activated, but adjacent 

areas were activated. In healthy controls, Brodmann area 9/10 was activated 

to a lesser extent than Brodmann area 8/9. The findings suggest that people 

with Asperger syndrome process other people’s mental states differently 

than healthy controls and that the left prefrontal cortex is a crucial part in 

understanding other people’s minds. 

People with DS show worse false belief ability than people with non-

specific intellectual disabilities and healthy controls (Giaouri, Alevriadou, 

and Tsakiridou 2010). In location-change, content-change, and physical-

appearance-reality-change (images differ in color, size, and identity 

sequentially) tests, people with DS display distinct theory of mind, 

compared with others with delayed developments. 

 

 

BRAIN AREAS ASSOCIATED WITH BIOLOGICAL MOTION 

(WITH AND WITHOUT EMOTION) AND THEORY OF MIND 
 

Biological motion is associated with action observation, which is 

reflected through mirror neurons in the brain. The linkage conveying 

information related to action observation travels from the posterior superior 

temporal sulcus (pSTS) through the inferior parietal lobe to the inferior 

frontal gyrus, which then bounces information back to the inferior parietal 

lobe and pSTS (Yang et al. 2016a). Grossman et al. (2000) reported that 

biological human movements are processed in the bilateral ventral pSTS, 

cerebellum, middle occipital gyrus, and extrastriate areas of the brain in 

typical adults. The superior temporal sulcus is responsive to hand actions, 

lip reading, gaze direction, and movements of mouth and eyes. The right 

superior temporal sulcus is responsive to social cues and makes inferences 

about facial emotion, behavior, mental state, and trustworthiness of visual 

cues, as well as integrating information from the dorsal and ventral pathways 

(Gallagher and Frith 2003). The left orbital frontal cortex, right cingulate 

gyrus, and left frontal pole are responsive to upright and inverted point-light 

images of human walking (Grèzes et al. 2001). 
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The brain areas that process biological motion with emotion include the 

amygdala, orbital frontal cortex, anterior cingulate cortex, anterior insula, 

nucleus accumbens, and subcortical structures (superior colliculus, pulvinar, 

and caudate nucleus). Hadjikhani and de Gelder (2003) demonstrated that 

the fusiform gyrus and right amygdala are activated while observing fearful 

faces but not happy or neutral faces, suggesting similarities in the brain’s 

processing of biological motion and facial emotion. This finding of 

similarity suggests a co-occurrence of motor movements and facial 

expressions due to muscle changes that occur while engaging in biological 

motion with emotion. Recognition of facial emotions thus largely depends 

on accuracy in interpreting body language. Healthy people can detect any 

incongruence between emotional body language and facial expression 

within 100 ms (de Gelder 2006).  

In a study using virtual reality, people with ASD showed improved 

performance in recognizing biological motion with emotion in the left pSTS, 

superior temporal gyrus, middle temporal gyrus, right insula, orbital frontal 

cortex, and inferior frontal gyrus, suggesting a strong relationship between 

emotion perception and extraction of forms from body movements (Yang et 

al. 2016b). In another study of people with ASD, atypical performance in 

processing biological motion was correlated with their symptom severity 

(Koldewyn et al. 2011). Herrington et al. (2007) and Freitag et al. (2008) 

identified hypo-activation of the pSTS in the processing of biological motion 

in people with ASD. Pelphrey and Carter (2008) identified failures in 

differentiating biological motions from non-biological motions in the 

superior temporal sulcus in people with ASD. Future studies are needed to 

assess neural correlates of biological motion in people with WS and people 

with DS.  

The amygdala and orbital frontal cortex are involved in the development 

of theory of mind (Meyer-Lindenberg, Mervis, and Berman 2006). For 

example, the amygdala is activated while observing untrustworthy faces in 

a judgment task, and impairment of the amygdala leads to dysfunctional 

theory of mind. The orbital frontal cortex is engaged in regulation of social 

behavior, so impairment can result in deficits in theory of mind. The orbital 

frontal cortex reflects task difficulty in typically developing controls, but 
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people with WS do not have this linkage. People with WS have an atypical 

amygdala and deficiencies in the orbital frontal cortex, the latter of which 

might account for their social disinhibition (Bellugi et al. 2000). 

In their review, Gallagher and Frith (2003) conclude that inferring other 

people’s intentions, desires, and beliefs through actions is important for 

social interaction. They cite neuroimaging studies revealing that these 

inferences involve the anterior paracingulate cortex, superior temporal 

sulcus, and bilateral temporal poles, which also are important areas of the 

brain for social skills. In particular, the anterior paracingulate cortex is part 

of the anterior cingulate cortex, which has evolved to decouple beliefs from 

realities. The anterior cingulate cortex supports intention-, cooperation-, and 

attention-related tasks. The anterior paracingulate cortex of the anterior 

cingulate cortex specializes in understanding mental states and remains 

active during rest and self-monitoring tasks. The superior temporal sulcus, a 

region that may aid in mentalizing, is involved in causality and 

intentionality.  

In a study by Kana et al. (2014) contrasting physical causality and 

intentional causality, people with ASD showed lower accuracy than healthy 

controls in recognizing causally intentional attributions depicted in passive 

viewing of comic strips. They further found that people with ASD have 

weaker connectivity in the neural network of theory of mind between the 

ventral premotor cortex and the temporoparietal junction, and they 

demonstrate lower activation of the inferior frontal gyrus and inferior 

parietal lobe when processing intentional causality. The results confirm 

atypical patterns in the processing theory of mind in people with ASD. It is 

unknown how people with WS and people with DS process theory of mind 

neurologically; hence, future studies are needed to fill the gaps. 

Correlations between perception of biological motion and theory of 

mind have been observed. For example, Rice et al. (2016) took direct 

measurements of theory of mind in healthy children aged 7 to 12 years using 

Baron-Cohen et al.’s (2001) test of “reading the mind in the eyes” and White 

et al.’s (2009) test using mental-state inference stories. Biological motion 

tests included images of figures walking forward or backward and facing left 

or right. The results revealed that children’s performance improved with age. 
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Theory of mind scores correlated with full-scale IQ, nonverbal IQ, and 

verbal IQ, but biological motion perception did not show any correlations 

with IQ. Rice et al. (2016) found significant correlations between walking 

direction and face orientation with theory of mind scores, but biological 

motion perception correlated only with face orientation. No correlation was 

observed between scores for theory of mind scores and for recognizing 

biological motion with physical inferences. These findings indicate that 

social perception of biological motion and social cognition of theory of mind 

might originate from the same mechanism. More studies are needed to 

investigate correlations between biological motion with and without 

emotion and theory of mind in neurodevelopmental disorders. As more 

neural correlates are identified, the atypical social brain can be better 

understood. 

 

 

CONCLUSION 
 

This chapter reviewed the literature exploring how people with certain 

neurodevelopmental disorders (i.e., those involving impairments in 

visuospatial perception) process biological motion with and without emotion 

from the perspective of the social-perceptual aspect of theory of mind. 

Distinct patterns in the theory of mind and processing of social information 

in atypical populations were reviewed. The chapter also reviewed studies 

focusing on people with WS and people with ASD, revealing their extreme 

sensitivities to social information and similar visuospatial characteristics of 

global ignorance and local focusing. The chapter also covered studies of 

people with DS showing their sensitivity to global information and weak 

sociability.  

This chapter contributes to the literature by offering a systematic review 

of how people with neurodevelopmental disorders process biological motion 

with and without emotions and the relationship with theory of mind. Neural 

correlates of biological motion with and without emotion remain unknown 

in people with WS and people with DS. Thus, future studies should focus on 

neural correlates of social cognition in these populations using perspectives 

Complimentary Contributor Copy



Ching-fen Hsu 148 

of biological motion with and without emotion, theory of mind, and the 

relationship between the two. Further comparisons will help identify the 

developmental trajectories of social cognition in neurodevelopmental 

disorders and thus may reveal useful interventions. 
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ABSTRACT 
 

Among all the cognitive abilities of the human brain, the one that has 

most deeply interested neuroscientists is consciousness, which at its 

simplest refers to “sentience or awareness of internal or external 

existence.” Several theories have been proposed to explain this 

phenomenon. Stuss, Picton, and Alexander (2001) and Stuss and Anderson 

(2004) argued that there are different types of consciousness, hierarchically 

organized, which need to be differentiated. The different types of 

consciousness are associated with distinct neural substrates, which remain 

the subject of intense investigation. Someone suggested that it could be a 

“real function” localized in a precise region of the brain, which would deal 

precisely with collecting and synthesizing stimuli deriving from other 

areas. For others, it would depend on the synchronization between sensory 
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and mnemonic areas: critical groups of neurons, in different areas of the 

brain, would discharge simultaneously, thus giving rise to that integration 

of stimuli which is consciousness. Some neurobiological models of 

consciousness assume that the contents of consciousness are widely 

distributed in the brain. 

In “The Astonishing Hypothesis” (1994), Francis Crick identifies the 

anterior cingulate, as a likely candidate for the center of free will in 

humans. The anterior cingulate cortex acts as an important interface 

between emotion and cognition, and more specifically in the conversion of 

feelings into intentions and actions. It has been implicated in 1) emotion, 

motivation, and attention; 2) facial self-recognition, interceptive and 

emotional awareness; 3) integration of conscious experience; 4) error 

detection, conflict-monitoring, and self-related information monitoring 

(Palermo, 2017). Given the above, the ACC would play an important role 

in both “core” and introspective self-awareness (Philippi et al., 2012). 

Damasio and Mayer (2008) has previously suggested that “core 

consciousness” occurs when an organism becomes consciously aware of 

feelings associated with changes occurring to its internal bodily state; it is 

able to recognize that its thoughts are his own, and that they are formulated 

in its own perspective.  

Modern neuroscience suggests that the brain’s intrinsic activity may 

be an important process underlying consciousness. The Salience Network 

(SN) is an intrinsically connected large-scale network anchored in the 

anterior insula and dorsal anterior cingulate cortex. Together with its 

interconnected resting state networks, it contributes to a variety of complex 

brain functions. The SN has been implicated in modulating the switch 

between the externally directed cognition of the Central Executive 

Network (CES) and the internally directed cognition of the Default Mode 

Network (DMN). Moreover, the SN has been implicated in the detection 

and integration of emotional and sensory stimuli, coming for this 

considered responsible for self-awareness (Craig, 2009; Gogolla, et al., 

2014; Menon & Uddin, 2010).  

The chapter will deal with the definition of consciousness, the 

description of the neural substrates that have been associated with it, and 

the examination of the main interpretative models. Particular attention will 

be given to the role played by the cingulate cortex as a hub in functional 

networks involved in the emergence of consciousness. 

 

Keywords: consciousness, self-awareness, anterior cingulate cortex, 

salience network, central executive network, default mode network 
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INTRODUCTION 
 

Consciousness is the most pervasive and complex phenomenon to study. 

The word “consciousness” refers to those states of sensitivity and awareness 

that characteristically begin when we wake up from a dreamless sleep and 

continue until we go to sleep again, or fall into a coma or die, or somehow 

become “unconscious” (Searle, 1997). Thus defined, consciousness is an all-

or-nothing phenomenon. But there are "states of intensity" of consciousness 

that range from drowsiness to complete awareness. Defined in this way, 

consciousness is an interior, first-person and qualitative phenomenon. higher 

level humans and animals are conscious, but we do not know to what extent 

the phylogenetic scale extends (Searle, 1997). 

There are many questions to ask when dealing with consciousness. What 

really is consciousness? What does consciousness do? Could we have 

evolved without it? Where does it come from? Where is it? How do the 

neurobiological processes that take place in the brain cause consciousness? 

Although there is no definitive answer for any of these questions, there is 

nevertheless much to be said about it. Researchers have long since 

abandoned the level of mere speculation for progressively more empirical 

foundations of solving these and other questions about consciousness. The 

scientific discussion on consciousness is the modern version of the famous 

mind-body problem. The enormous variety of stimuli that affects a human 

being triggers a sequence of processes that produce unified, ordered, 

coherent and internal subjective states of consciousness. The problem of 

how this occurs concerns not only perception, but also the experience of 

voluntary action and inner mental processes.  

It is an amazing fact that anything in conscious life is attributable to 

brain processes. We know that the brain and consciousness are intimately 

linked, because changes in one cause it in the other. Substances that alter 

brain functions also influence subjective experiences; stimulation of certain 

brain areas can induce hallucinations, physical or emotional sensations; 

some brain injuries can profoundly afflict consciousness (Purves et al., 

2013). It remains a mystery why we are conscious. The brain does not seem 

designed to give rise to the type of consciousness that distinguishes the 
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human being (Blackmore, 2005). Our central nervous system acts largely 

according to a parallel and distributed pattern. It resembles a large set of 

interconnected functional networks. Nothing is centralized. Nonetheless, the 

impression is that consciousness is a unitary block (Blackmore, 2005). There 

are three different descriptions of this alleged “unity”: 

 

 The unity of consciousnes would consist in the convergence of all 

that I feel right now: the contents of consciousness constitute my 

actual experiences; 

 It would consist of a temporal unity based on the apparent continuity 

that binds one instant to the next, or that crosses a whole life of 

conscious experiences. 

 It would consist of the "I" that experiences the contents of 

consciousness: that is, there is a single subject for a single flow of 

experiences. 

 

A theory of consciousness must therefore explain the contents of 

consciousness, its continuity and the existence of a conscious self in order 

to be valid (Blackmore, 2005). It must also do so starting from a central 

nervous system that is not centralized, but organized according to a parallel 

and multiple-track process (Blackmore, 2005). 

There are a number of special features that make neuroscience problems 

difficult to solve (Searle, 1997). Some are of a practical nature: the human 

brain is the most complex organ in the universe, with more than one hundred 

billion neurons, each of which has countless synaptic connections with other 

neurons (Searle, 1997). It is also difficult to work with brain microelements 

without risking damage them or kill the organism (Searle, 1997). In addition 

to the difficulties of a practical nature, there are numerous philosophical and 

theoretical obstacles and confusions which make it difficult to ask questions 

and answer them correctly (Searle, 1997). We may approach consciousness 

through internal subjective states and modern neuroimaging techniques. But 

how to do it with scientific rigor? How to subject the most volatile and 

multifaceted experience - all in the first person - to the most subtle criteria 

of science, which are all in the third person? This question grips the scientists 
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who placed consciousness at the center of their research, with a convergence 

similar to that which had been given, a few decades ago, on the atomic 

structure of matter. 

 

 

THE GREAT MYSTERY OF NEUROSCIENCE 
 

Conscience, Consciousness or Self-Awareness?  

The Role of the Anterior Cingulate Cortex 
 

The first requirement for any sensible discussion about consciousness is 

to establish clear definitions of the terms involved. First, the meanings of the 

two terms “conscience” and “consciousness” are often confused and are 

misunderstood by many people (Vithoulkas & Muresanu, 2014). The 

concept of conscience is the inherent ability of every healthy human being 

to perceive what is right and what is wrong and, on the strength of this 

perception, to control, monitor, evaluate and execute their actions 

(Vithoulkas & Muresanu, 2014). The word “consciousness” is derived from 

Latin, having its roots in conscio formed by the coalescence of cum meaning 

‘with’ and scio meaning ‘know’. In its original sense, to be conscious of 

something was to share the knowledge of it with someone else or with 

oneself (Zeman, 2001; Koch, 2012).  

There is no generally accepted definition of consciousness, but the 

following definitions illustrate what is commonly meant by this term 

(Blackmore, 2005): 

 

 “What is it like to be ....”: if I feel something about being an animal 

(or a computer, or a baby), then the animal, the computer or the baby 

is conscious. Otherwise no. 

 Subjectivity and phenomenality: consciousness means subjective or 

phenomenal experience. It is the way things present themselves to 

me, as opposed to how they are objectively. 
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 Qualia: the ineffable subjective qualities of the experience, such as 

the sensation of the red of a tulip or the difficult to describe smell of 

turpentine. 

 The hard problem: it is the problem of explaining why there is 

“something it is like” for a subject in conscious experience, why 

conscious mental states “light up” and directly appear to the subject. 

 

Most neuroscientific definitions of consciousness refer to three different 

aspects of this phenomenon (Blackmore, 2005):  

 

 consciousness as a physiological state (being awake)  

 consciousness intended as awareness of the world and self (being 

aware) 

 consciousness intended as self-awareness (being aware of yourself 

as agents in the world) 

 

Wakefulness and awareness seem to represent the two main components 

of consciousness (Vithoulkas & Muresanu, 2014). Arousal is defined by the 

level of consciousness, awareness is defined by the content of 

consciousness. Awareness contains self-awareness, which perceives the 

internal world of thoughts, reflection, imagination, emotions, and 

daydreaming, as well as external awareness, which perceives the outside 

world with the help of the five senses (Vithoulkas & Muresanu, 2014). 

Another aspect of consciousness to be considered concerns its temporal 

aspect. Consciousness occupies the time between the past and the future and 

thus defines our sense of the present. This raises the question of how 

consciousness, in the sense of a constantly changing present moment, differs 

from the continually moving attentional focus (Purves et al., 2013). Our 

conscious sense of the present moment, or “right now,” is defined by neural 

processing. In rough terms, the object of conscious attention represents 

another way of defining the present moment. Being physiologically awake 

and potentially reactive to information in the present time are necessary 

conditions for consciousness understood in its further meanings: being 

aware of the world and of oneself in the world (Purves et al., 2013).  
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Stuss, Picton, and Alexander (2001) and Stuss and Anderson (2004) 

argued that there are different types of consciousness, hierarchically 

organized, which need to be differentiated. They proposed different elements 

in a four-levels hierarchical framework of awareness, where the processing 

in turn operating in a modular manner at any level of the hierarchy, so that 

damage in one functional domain may result in a different kind of reduced 

self-awareness. The different types of consciousness are associated with 

distinct neural substrates, with the higher levels related to self-awareness 

and theory of mind, with an emphasis on the role of the frontal lobes 

(Palermo, 2017; p. 148-149). 

At the lowest level, the brainstem reticular system mediates the arousal 

aspects of consciousness. The second level of awareness involves the 

sensory and motor regions of the neocortex, which in turn, sustains the 

analysis of incoming sensory information and the construction of complex 

motor activity. This level leads to the simple awareness of the sensory world 

and one’s bodily responses. At the highest level of conscious processing, the 

frontal lobes are considered particularly important for self-awareness a 

multifaceted phenomenon that has been proposed central to human 

consciousness (Philippi et al., 2012). The third level mediates the executive 

functions that integrate the information provided by the sensory systems in 

the posterior part of the brain and organizes goal-directed responses to this 

input. A final level relates to self-awareness and theory of mind is associated 

with the medial prefrontal cortex [MPFC] (Palermo, 2017; p. 148-149). 

Inrestengly, the MPFC is referred to a functional network including the 

anterior cingulate cortex [ACC] (Amodio & Frith, 2006) and other 

heteromodal association areas that respond to multiple types of affective and 

cognitive events (Shackman et al., 2011). 

The ACC contribute to behavior by modifying responses in reaction to 

challenging cognitive and physical states requiring additional effortful 

cognitive control. The ACC monitors and modulates cognitive activity in 

dorsolateral frontal cortex, supervises the emotional salience 

(avereness/pleasant) of stimuli in conjunction with orbitofrontal cortex, 

exerts control over the autonomic nervous system and subjective feelings 
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with insular cortex (Gasquoine, 2013). The ACC is therefore a neural hub 

which expresses itself as a monitoring-attentional system.  

In “The Astonishing Hypothesis” (1994), Francis Crick identifies the 

anterior cingulate sulcus, as a likely candidate for the center of free will in 

humans. Crick bases this suggestion on scans of patients with specific 

lesions that seem to interfere with their sense of independent will, such as 

alien hand syndrome. Moreover, anterior cingulate is more active when the 

brain is engaged in internal monitoring and in processing information related 

to self (Cavanna & Trimble, 2006; Cavanna, 2007). In particular, the ACC 

has been implicated in interoceptive and emotional awareness (Damasio, 

1999; Chritchley et al., 2004; Lane et al., 1998; Critchley, 2005), facial self-

recognition (Kircher et al., 2001), and more generally in the integration of 

our conscious experience (Damasio, 1999; Dehaene, Kerszberg, and 

Changeux, 1998). Moreover, it is closely linked to conscious conflict 

monitoring (Botvinick, Cohen, and Carter, 2004; Botvinick et al., 2001; 

Dehaene et al., 2003; Mayr, 2004, Palermo, Stanziano and Morese, 2018), 

and to the monitoring of self-related information underlying introspection. 

Research on patients with bilateral ACC damage provide evidence for the 

role of the ACC in emotion, motivation, and attention (Barris & Schuman, 

1953; Cohen et al., 1999a, 1999b, Damasio & Van Hoesen, 1983; Shackman 

et al., 2011). When ACC damage is combined with damage to the adjacent 

supplementary motor area, patients can manifest a profound state of akinetic 

mutism (Damasio & Van Hoesen, 1983; Devinsky, Morrell, and Vogt, 

1995). Finally, selective right anterior cingulate damage has been previously 

associated with impaired self-awareness (Palermo et al., 2014). Given the 

above, the ACC would play an important role in both “core” and 

introspective self-awareness (Philippi et al., 2012), defined as follows: 

 

 Core self-awareness is grounded on the protoself, which includes 

‘‘primordial feelings’’ of the living body and a preattentive, 

elementary form of self-consciousness. On a moment to moment 

basis, core self-awareness generates a sense of personal agency and 

ownership over behavioral actions and sensory representations 

(Philippi et al., 2012). 
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 Introspective self-awareness relies on higher-order executive, 

attentional and metacognitive functions, which enable introspection, 

the ability to perform a controlled reflection on one’s own mental 

states, behaviors, and their consequences (Philippi et al., 2012).  

 

Philippi’s (2012) theory is based on the model of consciousness 

previously proposed by Damasio and Mayer (2008), who has previously 

suggested a three-layered theory based on a hierarchy of stages, with each 

stage building upon the last. The most basic representation of the organism 

is referred to as the protoself, next is core consciousness, and finally, 

extended consciousness. Core consciousness occurs when an organism 

becomes consciously aware of feelings associated with changes occurring to 

its internal bodily state; it can recognize that his thoughts are his own, and 

that they are formulated in his own perspective (Damasio & Mayer, 2008). 

Self-awareness should therefore be considered a pivotal component of 

conscious experience (Lou, Changeux, and Rosenstand, 2017). Despite 

applying different methodologies on the different aspects of self-awareness, 

neuroscientific research showed converging evidence for medial 

prefrontal/anterior cingulate and parietal/posterior cingulate paralimbic 

regions being correlated with self- awareness (Lou, Changeux, and 

Rosenstand, 2017). Are these data enough to define the neural substrates of 

consciousness? Is this level of investigation enough or should we go further? 

 

 

NEUROSCIENCE AND CONSCIOUSNESS:  

THE NEW FRONTIERS OF RESEARCH 
 

The Mystery of Consciousness? It Is All a Question  

of “Relationships” 
 

Nobody has any idea what exactly consciousness is and where it resides. 

Also, because it should not be sought from a morphological or anatomical 

point of view, but from a functional one: consciousness would not be the 

result of the action of a single brain area, but of the relationship established 
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between neurons of different brain/mental compartments. One of the most 

ambitious goals of contemporary neuroscience is the explanation of 

consciousness. Many scientists emphasize the necessary role of the 

prefrontal and frontal cortex for consciousness, while others argue that the 

brain stem and other structures of the midbrain may be sufficient conditions 

for consciousness. The brain stem is the sorting center for nerve impulses: 

the fibers that innervate the spinal cord, brain and cerebellum pass through 

here. The brain stem regulates fundamental actions such as breathing, sleep-

wake rhythm, blood circulation, pressure in the vessels. It would be closely 

connected with the functioning of consciousness. The latter has always been 

thought to reside in an unspecified point of the cerebral cortex, the outermost 

layer of the brain, linked to thought, speech and concentration. 

Nonetheless, neurologists from Harvard Medical School and Beth Israel 

Deaconess Medical Center have identified a connection between the region 

of the brain stem involved in excitement and regions that concern awareness, 

key prerequisites for explaining consciousness in terms of relationship 

(Fischer et al., 2016). The neuroimaging study was performed on 36 patients 

with brain stem lesions (12 of whom were in coma), using a new brain tissue 

analysis technique, the voxel-based lesion-symptom mapping. Fischer and 

colleagues (2016) have found that a small region in the rostral dorsolateral 

pontine tegmentum was significantly associated with coma-causing lesions. 

In healthy adults, this brainstem site was functionally connected to the 

ventral anterior insula [AI] and pregenual anterior cingulate cortex [pACC]. 

The first resides in the cerebral cortex and expresses an individual’s 

cognitive and emotional development; the second is fundamental for the 

elaboration of experiences and dangers. These cortical areas aligned poorly 

with previously defined resting-state networks, better matching the 

distribution of von Economo neurons. Connectivity between the AI and 

pACC was disrupted in patients with disorders of consciousness, and to a 

greater degree than other brain networks (Fischer et al., 2016). The 

functional network composed of pontine tegmentum AI and pACC may 

have a role in the maintenance of human consciousness.  

These findings help to understand brain connectivity at the base of 

consciousness and to explain how a localized lesion ends up affecting the 
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entire neuronal system. It is no coincidence that scholars have begun to 

speak of a “connectome” to indicate the map of connections between all 

neurons in the brain. The thesis is also ridden by Stuart Hameroff and by 

mathematician Roger Penrose, author of the famous “The Emperor’s New 

Mind” (1989). The two speak of “quantum vibrations” by asserting that 

many anesthetics act on cellular structures of a protein nature, the 

microtubules. They reside in the nerve cells and would explain anomalous 

electroencephalographic rhythms, but completely similar to a conscientious 

flow (Penrose, 1994). Consciousness, therefore, may not be a human 

prerogative and nestle innately in microstructures assigned to the transport 

of substances and cellular stability. Penrose is convinced of this and thus 

justifies “the mouse who evades a trap and takes away a chocolate”; but also, 

the hypothesis that, being a product of a quantum nature, it can survive the 

individual.  

 

 

The Orch-OR Model and the Implications for Consciousness 
 

The Penrose-Hameroff hypothesis on quantum effects in neurobiology, 

also called Orchestrated Objective Reduction [Orch-OR], is a conjecture on 

the possibility that some phenomena typical of quantum mechanics 

(especially the collapse of the wave function and the entanglement) affect 

the neurochemical processes that contribute to defining consciousness. 

Penrose (1989) hypothesized, with a controversial analogy on Gödel’s 

incompleteness theorems, that the human brain has non-algorithmic 

functions and that, therefore, its processes cannot be formalized-computable 

and cannot be reproduced on a computer level. Subsequently, after 

discussing with Hameroff about the physical processes inherent in the 

functioning of neurons, Penrose (1994) suggested that quantum effects play 

a role in neurochemical processes, since the superimposed states between 

electrons (according to his vision of quantum gravity) are associated with a 

relative curvature of spacetime, and if they exceed the Planck length (1.616 

× 10−35m) in mutual distance, they begin to collapse. 
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Hameroff proposed that microtubules are suitable candidates to support 

quantum processing. Quantum entanglement is a state in which particles can 

alter their properties instantaneously and at a distance, in a way that would 

not be possible, if they were large-scale extended objects (which would obey 

the laws of classical mechanics and not of quantum physics). The 

microtubules condensed in a single neuron can be links with condensates of 

microtubules in other neurons and glial cells via gap junctions. Gap 

junctions are connections where the gap between cells is small enough to 

make it possible for quantum objects to cross it by means of a process known 

as a quantum tunnel. This tunnel would allow a quantum object to pass into 

other neurons, and therefore to spread over a large area of the brain, 

generating a unique quantum object. It is also hypothesized that this large-

scale quantum feature is the source of the synchronization gamma waves 

observed in the brain, and sometimes considered to be related to the 

phenomenon of consciousness. 

The Orch-OR theory combines Penrose’s hypothesis regarding Gödel’s 

theorem with the Hameroff’s hypothesis about microtubules: when 

condensations occur in the brain subjected to an objective reduction of the 

wave function, collapse is connected to decisions of a non-computational 

nature and incorporated in the space-time geometry (Penrose, 1994). 

According to biocentrism, space and time are simply the tools our mind 

uses to weave information together into a coherent experience — they are 

the language of consciousness (Lanza & Berman, 2009, 2016). At death 

there is a break in our linear stream of consciousness, and thus a break in the 

linear connection of times and places. Indeed, biocentrism suggests it is a 

manifold that leads to all physical possibilities. More and more physicists 

are beginning to accept the “many-worlds” interpretation of quantum 

physics, which states that there are an infinite number of universes. 

Everything that can possibly happen occurs in some universe. Death does 

not exist in these scenarios, since all of them exist simultaneously regardless 

of what happens in any of them. It is possible to assume that, if 

consciousness is released from the evolution of species, it can be a 

prerogative of the universe that completely transcends our existence (Lanza 

& Berman, 2009). 
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The “me” feeling is just energy operating in the brain. But energy never 

dies; it cannot be destroyed. In short, you die, but in a sense you exist 

forever. Lanza (2016) knows how to express it with more poetry: “with 

death, our life becomes a perennial flower that returns to live in the 

multiuniverse.” 

 

 

LOOKING FOR THE NEURAL UNDERPINNINGS  

OF CONSCIOUSNESS 
 

The concept of «localization of function» was an important milestone 

for behavioural neuroscience. Today we know that the contemporaneous 

functional modulation of different cerebral area varies in a predictable way 

depending on what a subject is doing. Thanks to modern neuroimaging and 

a more carefully validated understanding of human cognition, a detailed 

view of the brain organization is now emerging. Modular systems are 

outdated, the network approach is the current one (Kandel et al., 2012). One 

of the main topics of discussion in the 20th century was whether mental 

activities - such as thought, emotions, self-awareness and will - are functions 

different from brain activities - such as the movement of a limb, the 

perception of a color, etc. - or if they also represent functional expressions 

of the brain neurons (Palermo & Morese, 2019). 

In recent decades, several researchers have used modern neuroimaging 

techniques to explicitly identify the neural substrates of consciousness. The 

dilemma is called “the hard problem of consciousness,” an expression 

coined in 1995 by David Chalmers. The challenge arises because it does not 

seem that the qualitative and subjective aspects of conscious experience - 

how consciousness “feels” and the fact that it is directly “for me” - fit into a 

physicalist ontology, one consisting of just the basic elements of physics 

plus structural, dynamical, and functional combinations of those basic 

elements (Chalmers, 1995).  

Starting a few years earlier, researchers have made significant progress 

toward identifying which neurobiological events occur concurrently to the 

experience of subjective consciousness (Koch et al., 2016). The expression 
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“neural correlates of consciousness” had first been used to describe the 

neural models that tried to explain consciousness. It has been defined as the 

minimum neuronal mechanisms jointly sufficient for any one specific 

conscious experience (Crick & Koch, 1990). Importantly. a hot topic is to 

investigate the difference between neural activities that are associated with 

awareness and those that are not. 

 

 

The Neural Substrates of Consciousness 
 

When we are trying to associate consciousness with structures in the 

brain, we must clearly define what level of consciousness we are talking 

about (Damasio, & Mayer, 2008; Stuss, Picton, and Alexander, 2001; Stuss 

& Anderson, 2004). 

A very primitive form of consciousness (the so-called protoself in 

Damasio’s three-layered theory) - which function is to constantly detect and 

record, moment by moment, the internal physical changes that affect the 

homeostasis of the organism - is associated with activity of such brain 

structures as the reticular formation, the hypothalamus, and the 

somatosensory cortex (Damasio & Mayer, 2008). The reticular formation is 

also associated with consciousness in the minimal sense of wakefulness. 

Other structures involved in simply maintaining wakefulness include the 

pons, the raphe nuclei and the locus coeruleus (Purves et al., 2013). Core 

consciousness depends chiefly on the cingulate cortex and on the 

intralaminar nuclei of the thalamus (Damasio & Mayer, 2008). When 

consciousness moves beyond the here and now, Damasio’s third and final 

layer emerges as extended consciousness. This level could not exist without 

its predecessors, and, unlike them, requires a vast use of conventional 

memory. This autobiographic dimension of consciousness implies that a 

subject can form mental representations of conscious experiences in the past 

or the future, and therefore requires the support of memory and the higher 

functions that make abstract conceptualization and planning possible. Not 

only frontal and parietal lobes would be actively engaged, but also the 

angular gyrus, the precuneus, and the anterior cingulate cortex, which are 
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often very active in a conscious state of rest, are part of a functional network 

that makes self-consciousness possible. 

 

 

How Are Different Neural Networks Related to Consciousness? 
 

Modern neuroscience suggests that the brain’s intrinsic activity may be 

an important process underlying consciousness. The level of vigilance can 

be modulated by the dynamics of resting state and task-engaged networks 

(Nani et al., 2019).  

The Salience Network (SN) is an intrinsically connected large-scale 

network anchored in the anterior insula and dorsal anterior cingulate cortex. 

The SN functions to segregate the most relevant among internal and 

extrapersonal stimuli in order to guide behavior (Menon & Uddin, 2010). 

Together with its interconnected resting state networks, the SN contributes 

to a variety of complex brain functions. The SN is important for detection 

and mapping of external salient inputs and task control (Dosenbach et al., 

2007; Seeley et al., 2007; Menon and Uddin, 2010; Uddin, 2015). Moreover, 

the SN features extensive connectivity with subcortical and limbic structures 

involved in reward and motivation (Menon & Uddin, 2010). 

The SN - and its two major cortical nodes, the insula and the anterior 

cingulate cortex - influence other core networks that have a different 

intrinsic organization (Menon & Uddin, 2010). It has been implicated in 

modulating the switch between the externally directed cognition of the 

Central Executive Network (CES) and the internally directed cognition of 

the Default Mode Network (DMN). The CES is engaged in higher-order 

cognitive and attentional control and is supposed to be related to externally 

guided awareness (Boveroux et al., 2010). Central executive network links 

the dorsolateral frontal and parietal neocortices, with subcortical coupling 

that is distinct from that of the salience network (Menon & Uddin, 2010). 

The DMN is characterized by a high degree of self-referential thinking, but 

not without exceptions (Lou, Changeux, and Rosenstand, 2017). Its major 

hubs are medial prefrontal/anterior cingulate and medial parietal/posterior 
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cingulate cortices like pure examples of self- awareness (Lou, Changeux, 

and Rosenstand, 2017). 

 Moreover, the SN has been implicated in the detection and integration 

of emotional and sensory stimuli, coming for this considered responsible for 

self-awareness (Craig, 2009; Gogolla, et al., 2014; Menon & Uddin, 2010). 

Damasio and Mayer (2008) have previously suggested that core 

consciousness is an emergent process that occurs when an organism 

becomes consciously aware of feelings associated with changes occurring to 

its internal bodily state; it is able to recognize that its thoughts are its own, 

and that they are formulated in its own perspective. The insula is the brain 

structure implicated in disparate cognitive, affective, and regulatory 

functions, including interoceptive awareness, emotional responses, and 

empathic processes (Menon & Uddin, 2010). Indeed, the insular cortex has 

been associated with the emotional modulation of conscious experience 

(Craig, 2010; Seth, Suzuki, and Critchley, 2011). Still, it is debated whether 

the insula can contribute by processing an essential ingredient of 

consciousness or just an attribution, albeit important, of an emotional and 

salient flavor to the contents of experience. Rather than being involved in 

phenomenal consciousness, the insula might be fundamental for creating 

self-awareness (Modinos, Ormel, and Aleman, 2009; Manuello et al., 2018). 

The other major evolutionary modification in the insula is a type of neuron 

that is found only in the great apes and in humans. These large, elongated, 

cigar-shaped nerve cells are known as von Economo neurons (VENs). VENs 

occur only in the insula and in the anterior cingulate cortex. The ACC acts 

as an important interface between emotion and cognition, and more 

specifically in the conversion of feelings into intentions and actions. It has 

been implicated in emotion, motivation, and attention; facial self-

recognition, interceptive and emotional awareness; integration of conscious 

experience; error detection, conflict-monitoring, and self-related 

information monitoring (Palermo, 2017). 

The fundamental role of the SN in the emergence of consciousness was 

confirmed by a study by Quin and collaborators (2015), aimed to investigate 

the roles of different resting-state networks in predicting both the actual level 

of consciousness and its recovery in brain injury patients. Authors found that 
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functional connectivity strength in SN, especially connectivity between the 

supragenual anterior cingulate cortex and left anterior insula, was reduced 

in the unconscious state compared to the conscious state. The findings show 

that SN (supragenual anterior cingulate cortex and left anterior insula) 

connectivity correlates with behavioral signs of consciousness, whereas 

DMN (posterior cingulate cortex and left lateral parietal cortex) connectivity 

instead predicts recovery of consciousness (Quin et al., 2015). 

Human consciousness is supported by dynamic complex patterns of 

brain signal coordination (Demertzi et al., 2019). Authors examined 159 

people who underwent functional magnetic resonance imaging. Among 

them were 47 volunteers who were examined awake and under general 

anesthesia, and 112 patients with severe brain injury, who were divided into 

two groups: state of minimal consciousness and vegetative state. Demertzi 

and colleagues (2019) - adopting the framework of brain dynamics as a 

cornerstone of human consciousness - determined whether dynamic signal 

coordination provides specific and generalizable patterns pertaining to 

conscious and unconscious states after brain damage. They found four 

patterns. The most complex one represents the intricate neural interactions 

between 42 different brain areas with important roles in consciousness 

(among which core “hubs” of the SN and DMN such as the dorsal anterior 

cingulate, midcingulate cortex and posterior cingulate): this pattern was 

observed especially in healthy awake patients and sometimes in those with 

minimal states of consciousness. Vegetative patients showed this neural 

pattern only in cases where they had responded positively to simple mental 

imagination tests. The most basic brain activation pattern - which reflected 

the simple physical connections between brain regions - was observed 

mainly in less reactive patients; while the two intermediate patterns were 

found in all the people examined. Interestingly, the most complex pattern 

disappeared during general anesthesia - evidence that the scheme really 

reflected the state of consciousness and not, for example, the result of brain 

damage. 
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CONCLUSION 
 

Is the human mind intelligent enough to understand its own existence? 

Is the brain the “place of consciousness”? Today it is possible to analyze the 

biological basis of consciousness, using the best theories available and all 

the research apparatus for the brain, from electroencephalographic psycho-

physiological techniques to advanced functional neuroimaging. 

Consciousness is supported by a complex interplay of different networks, 

including the ascending reticular activating system in the brainstem, the non-

specific nuclei of the thalamus, and the widespread thalamocortical 

projections to anterior cingulate, posteromedial cortex and fronto-parietal 

association cortices (Nani et al., 2019). The anterior cingulate cortex appears 

to be involved in the more complex levels of consciousness and self-

awareness. Nevertheless, little is known about the interaction between 

complex areas and the processes taking place at the level of individual 

neurons. 

The fact is that very little is known about consciousness and that much 

is still to be discovered. The challenge involves overcoming numerous 

theoretical, philosophical, religious and technological difficulties. It is no 

coincidence that the Nobel prize for physics, Neville Mott, said: «Neither 

physical science nor psychologu can ever “explain” human consciousness. 

To me then, human consciousness lies outside science, and it is here that I 

seek the relationship between God and man» (Mott, 1991). 
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ABSTRACT 
 

A Theory of Mind (ToM) reflects humankind’s evolution as social 

beings. That is, ToM implies potential energy, motivation, and 

empowerment. Empowerment is something that gives people hopes and 

dreams, brings them courage, and prompts them to be filled with the 

strength to live. Human beings are born with splendid abilities, and 

throughout their lives, they can continue to demonstrate magnificent 

strengths. Empowerment draws out that magnificent power and allows the 

vital force and potential that lie hidden deep within us to flow. 

This chapter explores theory of mind as an implication of 

empowerment, using empirical data on social competence development 

among children. 

 

Keywords: theory of mind, empowerment, inclusion 

 

 

1. HUMAN EVOLUTION AND DEVELOPMENT: LINKING 

EMPOWERMENT BETWEEN INDIVIDUALS, PEERS,  

AND THE COMMUNITY 
 

Human beings never survive alone. Evolutionary findings suggest that 

our strength lies in understanding and living harmoniously with others. This 

means ToM is an essential skill for survival. Moreover, the link between the 

three kinds of empowerment - self, peer, and community empowerment - is 

indispensable. 

There are three criteria to ensure the sustainable development of human 

society[1]. 

 

1. A sense of pride in oneself 

2. The ability to enjoy differences 
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3. Believing in the capacities of groups 

 

 

(1) A Sense of Pride in Oneself 
 

First, it is necessary to believe in and have pride in oneself, as it is 

impossible to have pride without first believing in oneself. Only by having 

a sense of self-pride does it become possible to recognize others. 

According to human development theory, babies become aware of their 

body and physical sensations during their exploratory activities. They feel 

their existence via the sense of comfort and discomfort, which is affected by 

the environment around them, such as emotional warmth of adults and a safe 

and comfortable atmosphere. A sense of pride in oneself is nurtured through 

positive acceptance by others and the society. It becomes a core of vital 

energy, reflecting positive interaction with the environment. 

 

 

(2) The Ability to Enjoy Differences 
 

The next requirement is the ability to enjoy differences with other 

people. Diversity is the basis for the development of society. In the theory 

of evolution, evolution is reported not as being rational but rather as the 

building of rationality over the irrational. It is from diversity and ambiguity 

that new values and things with meaning are birthed. Therefore, it is 

necessary to cherish an unorganized and ambiguous world and objects that 

may appear at a glance to be meaningless. Diversity is also interrelated with 

a sense of playfulness and room for growth. 

ToM is a basic skill to recognize others and understand differences. The 

ability to enjoy differences is an extension of the skill of ToM, which not 

only helps in noticing differences, but also facilitates positive acceptance of 

those differences. 

 

How do we promote the ability to enjoy differences? Many studies have 

shown that nurturing curiosity within a safe environment is a good starting 
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point. If the difference brings fear, nobody would accept that difference. 

Safety, stability, and mutual respect are essential to cherish differences. 

 

 

(3) Believing in the Capacities of Groups 
 

Third prerequisite is to believe in the capacities of peers and groups. A 

sense of trust, which is necessary among peers and communities, does not 

stop at trust between individuals. It is the ability to recognize various 

characteristics and to believe in the capacities of a group or community with 

such diversity. 

One example is inclusive education where children with special needs 

spend time together with others who do not have disabilities. Each child is 

able to gain confidence in themselves and accept their differences as things 

that are simply natural while they enjoy growing together. Regarding adults, 

recognition from peers will lead to reciprocal recognition for others, which 

will then tie into teamwork. 

In practice, the magnificent potential that each individual initially has is 

awakened, prompted to manifest, and is leveraged through activities for the 

good of people’s lives and for the development of society [3]. In groups of 

people such as in the context of a business enterprise, the potential vigor and 

capabilities of each employee can be drawn out skillfully and leveraged as 

energy to be linked to staff development and corporate growth. These are 

the things that empowerment - needed by organizations, groups, and people 

- are all about. 

 

 

2. EVIDENCE OF TOM AND SOCIAL  

COMPETENCE DEVELOPMENT 
 

Here, we explore the evidence of ToM and social competence 

development. The purpose of the study was to examine the relationship 

between children’s social competence and initial index of theory of mind at 

30 months of age. 

Complimentary Contributor Copy



A Theory of Mind as an Implication of Empowerment 185 

The participants were 322 toddlers and parents/caregivers who were 

registered with the Japan Science and Technology Agency (JST) project. 

They completed a five-minute interaction session, which was coded using 

the Interaction Rating Scale (IRS, Appendix 1) as an evidence-based 

practical index of children’s social competence [4, 5, 7]. 

The IRS is used to measure children’s social skills and caregivers’ child 

rearing skills through observations of caregiver-child interactions. It is 

appropriate for the assessment of interactions between caregivers and 

children from birth to age eight years. This rating scale comprises 70 items 

for behavioral score and 11 items for impression score, grouped into 10 

subscales. Five subscales focus on children’s social skills: Autonomy, 

Responsiveness, Empathy, Motor regulation, and Emotional regulation. 

Another five items assess caregivers’ parenting skills: Respect for autonomy 

development, Respect for responsiveness development, Respect for 

empathy development, Respect for cognitive development, and Respect for 

social-emotional development. Additionally, one item assesses overall 

impression of synchronous relationships. The items were selected from the 

HOME (Home Observation for Measurement of the Environment) [9], 

SSRS (Social Skills Rating Systems) [10], and NCAST (Nursing Child 

Assessment Satellite Training) teaching scales [11]. The IRS can be used in 

various settings (home, laboratory, etc.), and takes less than five minutes. 

Two different sets of variables are scored: behavior items and 

impression items of the subscale. It specifies the features of interaction for 

both subscale and total scores. Each subscale assesses the presence of 

behavior (1 = Yes, 0 = No), and the sum of all items in the subscale provides 

the overall behavior score. Scores on the impression items and the overall 

impression item are on a five-point scale, (where 1 = not evident at all, 2 = 

not evident, 3 = neutral, 4 = evident, 5 = evident at high level), and they 

measure caregiver-child interaction. The observer completes the checklist 

composed of 25 items focusing on children’s behavior toward caregivers 

(e.g., child looks at caregiver’s face as social referencing) and 45 items 

focusing on the caregiver behavior. The observer then provides an 

impression on a 5-point scale for each subscale and for an overall 

impression. 
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The Interaction Rating Scale (IRS) was tested on randomly selected 

normal children in Japan, and it showed highly significant correlations with 

NCAST teaching scales (child items r = .70; caregiver items r = .98; total r 

= .89). The IRS was also tested on children with developmental disorders 

(ADHD/PDD), mental retardation, and an abuse or maltreatment history. 

The IRS scores were significantly related to the children’s behavior and 

environmental problems, confirming the reliability and validity of the scale. 

The Cronbach’s alpha of the IRS subscales ranged from 0.62 to 0.80 [6]. 

Additionally, the children were asked to complete a diverse-desire task 

as a ToM (theory of mind) index. 

The results showed that the ToM index was related to the total score and 

subscales of the IRS, such as Empathy and Emotional regulation [8]. These 

findings show that the IRS score was related to ToM task performance at 30 

months of age. 

 

 

3. CREATING INCLUSIVE COMMUNITIES WITH  

THE “DYNAMIC SYNERGY MODEL” 
 

Recognizing others, which is a ToM skill, may sometimes increase the 

risk of bias. The concept of Dynamic Synergy Model (DSM) is an effective 

way to prevent this. The components of the DSM are complementary, 

interconnected, and interdependent in the world. Additionally, they give rise 

to each other, as they are interrelated. The DSM offers a framework for 

practice and research, using perspectives of a dual focus on lifespan 

development (Figure 1). It views all personal traits as valuable, 

indispensable, and changeable, thus moving beyond the traditional dualistic 

model of typical vs. atypical human development. 

The DSM can be illustrated by an ellipse, which encompasses each 

developmental trait of an individual, with a dual focus on both “typical” and 

“unique” traits. A developmental trait is not static but fluctuates in both 

directions of typical and unique within a dynamic equilibrium, reflecting the 

dynamic interplay between personal and environmental factors. 
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In other words, the model presents for every individual each 

developmental trait along a continuum, suggesting that it can be 

synergistically mixed from the “typical” to the “unique” and reflects the 

interplay between individual and environmental factors. Depending on 

circumstances, during the course of an individual’s life, a specific trait (or 

characteristic) may vary in its place on that continuum, moving toward the 

“typical” side from the “unique” and back again. 

 

 

Figure 1. Dynamic Synergy Model 

Any point on the ellipse represents the sum of an individual’s typical 

and unique characteristics. It can be a metaphor for the fact that each 

individual has equal dignity wherever one is. The background represents 

environmental factors, with Yang (White) as the “Supportive Environment 

(which promotes order)” and Yin (Gray) as the “Challenging Environment 

(which promotes change).” 

In practice, this model illustrates the importance of seeing each person 

with equal dignity, no matter the environment they are in, and no matter 

what combination of unique traits they hold. Thus, people cannot be seen as 

fixed in any one way, but as dynamically functioning and changing. This 

can lead directly to the reduction of prejudice and stereotyping, if all are seen 

as unique, worthy of dignity, and ever developing and changing throughout 
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life and circumstances. This supports a view of an interdependent, symbiotic 

society, where everyone is making important contributions, as well as 

relying on others for the talents they bring. 

Practitioners can also utilize this model to examine and create 

supporting/challenging environments in a manner adapted to the specific 

needs of the parties for their well-being. 

We will explore examples of DSM-based practice and research to 

empower people in communities with inclusive membership, values, and 

practices. 

 

 

CONCLUSION: TOM, SOCIAL COMPETENCE,  

AND EMPOWERMENT 
 

Empowerment is one method for realizing a society in which everyone 

is the hero of his or her life, where they can enjoy the differences between 

themselves and others and are able to embrace the joys of living alongside 

one another. 

It also links self, peer, and community empowerment, which are 

necessary for its promotion. 

 

 
Anme, 2008. 

Figure 2. Synergy model for empowerment. 
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Self-empowerment means bringing out one’s own capacities. Examples 

of this might include the use of a certain method for building motivation or 

to absorb oneself in a favorite pastime to relieve stress. Peer empowerment 

entails drawing out individual capacities through peers, such as by dining 

together or talking with one another. Community empowerment is the 

leveraging of communities, organizations, the workplace, or their systems to 

invigorate such groups. Examples of community empowerment include 

activities undertaken by the entire community to organize something 

together such as an event or a local festival [5]. 

The combined use and leveraging of these different types of 

empowerment are essential in order to realize something that is both 

sustainable and effective, and are called synergy model for empowerment 

(Figure 2). 

The science of empowerment is the product of plasticity, diversity, and 

holistic attributes. The reason for this is that plasticity is the power to change 

oneself and the environment, which is accelerated within diversity, and then 

integrated as a holistic action. ToM has a key role in ensuring and promoting 

empowerment in a suitable way - to make “A world of possibilities!” (Figure 

3). 

 

 

Figure 3. Mascot Character of Empowerment: Rainbow colored cloth and flower hair 

ornaments mean including diversity with Dynamic Synergy Model. 
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APPENDIX 1. INTERACTION RATING SCALE (IRS) 
 

Child Items 
 

I. Autonomy 

Child initiates interaction with caregiver. 

 

1. Child vocalizes while looking at task materials. 

2. Child smiles or laughs during the episode. 

3. Child attempts to engage caregiver in eye contact. 

4. Child initiates interaction with caregiver spontaneously. 

5. Child attempts to elicit caregiver’s response. 

 

II. Responsiveness to Caregiver 

Child is responsive to caregiver’s behavioral cues. 

 

1. Child displays strong reaction during the interaction. 

2. Child gazes at caregiver’s face or task materials after caregiver’s 

non-verbal behaviors. 

3. Child looks at caregiver’s face or eyes when caregiver attempts eye 

contact. 

4. Child vocalizes or babbles within five seconds of caregiver’s 

verbalization. 

5. Child vocalizes or babbles within five seconds of caregiver’s 

gestures, touch, or changes in facial expression. 

 

III. Empathy 

Child behaves consistently with caregiver’s affective expression. 

 

1. Child gives, shows, or points to task material to share emotion with 

caregiver. 

2. Child looks at caregiver’s face for social referencing. 

3. Child vocalizes or adjusts own behavior within five seconds of 

caregiver’s verbalization. 
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4. Child smiles at caregiver within five seconds of caregiver’s 

verbalization. 

5. Child adjusts behavior within five seconds in response to caregiver’s 

gestures, touch, or changes in expression. 

 

IV. Motor Self Regulation 

Child’s behavior directed toward the task; not overactive. 

 

1. Child widens eyes and/or shows postural attention to task situation. 

2. Child becomes appropriately active in response to task situation. 

3. Child’s movements are clearly directed toward/away from the task 

or task material. 

4. Child makes clearly recognizable hand motions during the episode 

(clapping, reaching, waving, pounding, pointing, pushing away). 

5. Child is neither restless or overactive. 

 

V. Emotional Self Regulation 

Child adjusts his/her emotional state to a comfortable level. 

 

1. Child stops displaying distress without caregiver’s response. 

2. Child stops displaying distress without caregiver’s soothing 

attempts. 

3. Child stops displaying distress within 15 seconds of caregiver’s 

soothing attempts. 

4. Child asks caregiver for help or consolation. 

5. Child is not startled by caregiver’s movements or changes in facial 

expression. 

 

 

Caregiver Items 
 

VI. Sensitivity to Child 

Caregiver accurately interprets child’s cues. 
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1. Caregiver positions child to safely support it. 

2. Caregiver provides an environment free of distractions. 

3. Caregiver positions child so it can reach and manipulate materials. 

4. Caregiver seeks the child’s attention before beginning the task, at 

the outset of the teaching interaction. 

5. Caregiver gives instruction only when the child is attentive (90%). 

6. Caregiver positions child so eye contact is possible during the 

teaching period (60%). 

7. Caregiver changes position of child and/or material after the 

unsuccessful attempts of child to do task. 

8. Caregiver keeps child in visual range. 

9. Caregiver stays close to child and pays good attention. 

 

VII. Responsiveness to Child 

Caregiver responds to child’s behavior. 

 

1. Caregiver praises child’s efforts at least once during the episode. 

2. Caregiver emits positive, sympathetic, or soothing verbalizations. 

3. Caregiver smiles, or touches child within five seconds after the 

child’s smile or vocalization. 

4. Caregiver emits soothing non-verbal response (i.e., pat, touch, rock, 

caress, kiss) 

5. Caregiver diverts the child’s distress by playing games, introducing 

new toy. 

6. Caregiver does not vocalize to the child while the child is 

vocalizing. 

7. Caregiver verbally praises child during the episode. 

8. Caregiver smiles and/or nods at the child  

9. Caregiver responds to child’s vocalizations with affectionate verbal 

response. 
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VIII. Respect for Child’s Autonomy 

Caregiver respects for child’s autonomy. 

 

1. Caregiver allows child to explore task material for at least five 

seconds before providing first task related instruction. 

2. Caregiver pauses when child initiates behaviors during episode. 

3. Caregiver asks for no more than three repetitions when child is 

successful at completing the task. 

4. Caregiver does not physically force child to complete task. 

5. Caregiver halts the episode when child is distressed. 

6. After giving instructions, caregiver allows at least five seconds for 

child to attempt task before intervening. 

7. Caregiver allows non-task manipulation of task materials after the 

original presentation. 

8. Caregiver does not make critical or negative comments about child’s 

task performance. 

9. Caregiver encourages and/or allows child to perform task at least 

once before intervening. 

 

IX. Social-Emotional Growth Fostering 

Caregiver encourages child’s social-emotional development. 

 

1. Caregiver does not make negative comments to child. 

2. Caregiver does not shout at child. 

3. Caregiver does not use abrupt movements or rough handling. 

4. Caregiver does not slap, hit, or spank. 

5. Caregiver does not make negative comments to observer about 

child. 

6. Caregiver’s body posture is relaxed during the episode (50%). 

7. Caregiver faces the child while talking (50%). 

8. Caregiver behaves affectionately during the episode. 

9. Caregiver makes constructive or encouraging statements during the 

episode. 
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X. Cognitive Growth Fostering 

Caregiver encourages child’s cognitive development. 

 

1. Caregiver focuses own attention and child’s attention on task during 

most of the period (60%). 

2. Caregiver describes perceptual qualities of task materials to child. 

3. Caregiver uses at least two different sentences or phrases to describe 

task to child. 

4. Caregiver uses an explanatory verbal style more often than a 

directive style during the episode. 

5. Caregiver’s instructions are clear and unambiguous. 

6. Caregiver uses both verbal description and non-verbal instruction. 

7. Caregiver uses teaching loops (alerting, instruction, performance, 

and feedback) in instructing child. 

8. Caregiver signals completion of task to child verbally or non-

verbally. 

9. Length of caregiver instruction to child is age appropriate (generally 

1-5 minutes). 

 
* Overall Impression: A Synchronous Relationship 
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